0 purchases
africanwordnet 0.0.1
AfricanWordNet: Implementation of WordNets for African languages
This library extends OMW implemented in NLTK to add support for the following African languages.
Sepedi (nso)
Xitsonga (tsn)
Tshivenda (ven)
isiZulu (zul)
isiXhosa (xho)
[]
Requirements
Python 3
NLTK
Installation
From Pypi
pip install africanwordnet
From source
pip install https://github.com/JosephSefara/AfricanWordNet.git
Citation Paper
@inproceedings{sefara2020practical,
title={Paper Title},
author={Sefara, Tshephisho and Mokgonyane, Tumisho and Marivate, Vukosi},
booktitle={Proceedings of the Eleventh Global Wordnet Conference},
paages={},
year={2020},
}
Usage
>>> from nltk.corpus import wordnet as wn
>>> import africanwordnet
>>> wn.langs()
['nso', 'tsn', 'ven', 'zul', 'xho']
Setswana WordNet
>>> wn.synsets('phêpafatsa',lang=('tsn'))
[Synset('scavenge.v.04'),
Synset('tidy.v.01'),
Synset('refine.v.04'),
Synset('refine.v.03'),
Synset('purify.v.01'),
Synset('purge.v.04'),
Synset('purify.v.02'),
Synset('clean.v.08'),
Synset('clean.v.01'),
Synset('houseclean.v.01')]
>>> wn.lemmas('phêpafatsa', lang='tsn')
[Lemma('scavenge.v.04.phêpafatsa'),
Lemma('tidy.v.01.phêpafatsa'),
Lemma('refine.v.04.phêpafatsa'),
Lemma('refine.v.03.phêpafatsa'),
Lemma('purify.v.01.phêpafatsa'),
Lemma('purge.v.04.phêpafatsa'),
Lemma('purify.v.02.phêpafatsa'),
Lemma('clean.v.08.phêpafatsa'),
Lemma('clean.v.01.phêpafatsa'),
Lemma('houseclean.v.01.phêpafatsa')]
>>> wn.synset('purify.v.01').lemma_names('tsn')
['phêpafatsa']
>>> lemma = wn.lemma('purify.v.01.phêpafatsa', lang='tsn')
>>> whole_lemma.lang()
'tsn'
Sepedi WordNet
>>> wn.synsets('taelo',lang=('nso'))
[Synset('call.n.12'),
Synset('mandate.n.03'),
Synset('command.n.01'),
Synset('order.n.01'),
Synset('commission.n.06'),
Synset('commandment.n.01'),
Synset('directive.n.01'),
Synset('injunction.n.01')]
>>> wn.lemmas('taelo', lang='nso')
[Lemma('call.n.12.taelo'),
Lemma('mandate.n.03.taelo'),
Lemma('command.n.01.taelo'),
Lemma('order.n.01.taelo'),
Lemma('commission.n.06.taelo'),
Lemma('commandment.n.01.taelo'),
Lemma('directive.n.01.taelo'),
Lemma('injunction.n.01.taelo')]
>>> wn.synset('call.n.12').lemma_names('nso')
['taelo']
>>> lemma = wn.lemma('call.n.12.taelo', lang='nso')
>>> whole_lemma.lang()
'nso'
isiZulu WordNet
>>> wn.synsets('iqoqo', lang='zul')
[Synset('whole.n.02'),
Synset('conspectus.n.01'),
Synset('overview.n.01'),
Synset('sketch.n.03'),
Synset('compilation.n.01'),
Synset('collection.n.01'),
Synset('team.n.02'),
Synset('set.n.01')]
>>> wn.lemmas('iqoqo', lang='zul')
[Lemma('whole.n.02.iqoqo'),
Lemma('conspectus.n.01.iqoqo'),
Lemma('overview.n.01.iqoqo'),
Lemma('sketch.n.03.iqoqo'),
Lemma('compilation.n.01.iqoqo'),
Lemma('collection.n.01.iqoqo'),
Lemma('team.n.02.iqoqo'),
Lemma('set.n.01.iqoqo')]
>>> wn.synset('whole.n.02').lemma_names('zul')
['iqoqo']
>>> whole_lemma = wn.lemma('whole.n.02.iqoqo', lang='zul')
>>> whole_lemma.lang()
'zul'
isiXhosa WordNet
>>> wn.synsets('imali',lang=('xho'))
[Synset('finance.n.03'),
Synset('wealth.n.04'),
Synset('capital.n.01'),
Synset('store.n.02'),
Synset('credit.n.02'),
Synset('money.n.01'),
Synset('currency.n.01'),
Synset('purse.n.02'),
Synset('franc.n.01'),
Synset('cent.n.01')]
>>> wn.lemmas('imali', lang='xho')
[Lemma('finance.n.03.imali'),
Lemma('wealth.n.04.imali'),
Lemma('capital.n.01.imali'),
Lemma('store.n.02.imali'),
Lemma('credit.n.02.imali'),
Lemma('money.n.01.imali'),
Lemma('currency.n.01.imali'),
Lemma('purse.n.02.imali'),
Lemma('franc.n.01.imali'),
Lemma('cent.n.01.imali')]
>>> wn.synset('wealth.n.04').lemma_names('xho')
['imali']
>>> lemma = wn.lemma('wealth.n.04.imali', lang='xho')
>>> lemma.lang()
'xho'
Tshivenda WordNet
>>> wn.synsets('tshifanyiso',lang=('ven'))
[Synset('picture.n.05'),
Synset('word_picture.n.01'),
Synset('portrayal.n.01')]
>>> wn.lemmas('tshifanyiso', lang='ven')
[Lemma('picture.n.05.tshifanyiso'),
Lemma('word_picture.n.01.tshifanyiso'),
Lemma('portrayal.n.01.tshifanyiso')]
>>> wn.synset('picture.n.05').lemma_names('ven')
['tshifanyiso']
>>> lemma = wn.lemma('picture.n.05.tshifanyiso', lang='ven')
>>> whole_lemma.lang()
'ven'
Find related words
The word taelo in Sepedi is related to
tagafalo
molao
tlhalošo
words = set()
synsets = wn.synsets('taelo',lang=('nso'))
for synset in synsets: # synset is in english
for hypo in synset.hyponyms():
for lemma in hypo.lemmas("nso"):
words.add(lemma.name())
print('taelo', '---', words)
taelo --- {'taelo', 'tagafalo', 'molao', 'tlhalošo'}
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.