allpairspy 2.5.1

Creator: codyrutscher

Last updated:

0 purchases

allpairspy 2.5.1 Image
allpairspy 2.5.1 Images

Languages

Categories

Add to Cart

Description:

allpairspy 2.5.1

allpairspy forked from bayandin/allpairs

AllPairs test combinations generator
Features
Get Started

Basic Usage
Filtering
Data Source: OrderedDict
Parameterized testing pairwise by using pytest
Other Examples


Installation

Installation: pip
Installation: apt


Known issues
Dependencies
Sponsors







AllPairs test combinations generator
AllPairs is an open source test combinations generator written in
Python, developed and maintained by MetaCommunications Engineering.
The generator allows one to create a set of tests using “pairwise
combinations” method, reducing a number of combinations of variables
into a lesser set that covers most situations.
For more info on pairwise testing see http://www.pairwise.org.


Features

Produces good enough dataset.
Pythonic, iterator-style enumeration interface.
Allows to filter out “invalid” combinations during search for the next combination.
Goes beyond pairs! If/when required can generate n-wise combinations.



Get Started

Basic Usage

Sample Code:
from allpairspy import AllPairs

parameters = [
["Brand X", "Brand Y"],
["98", "NT", "2000", "XP"],
["Internal", "Modem"],
["Salaried", "Hourly", "Part-Time", "Contr."],
[6, 10, 15, 30, 60],
]

print("PAIRWISE:")
for i, pairs in enumerate(AllPairs(parameters)):
print("{:2d}: {}".format(i, pairs))

Output:
PAIRWISE:
0: ['Brand X', '98', 'Internal', 'Salaried', 6]
1: ['Brand Y', 'NT', 'Modem', 'Hourly', 6]
2: ['Brand Y', '2000', 'Internal', 'Part-Time', 10]
3: ['Brand X', 'XP', 'Modem', 'Contr.', 10]
4: ['Brand X', '2000', 'Modem', 'Part-Time', 15]
5: ['Brand Y', 'XP', 'Internal', 'Hourly', 15]
6: ['Brand Y', '98', 'Modem', 'Salaried', 30]
7: ['Brand X', 'NT', 'Internal', 'Contr.', 30]
8: ['Brand X', '98', 'Internal', 'Hourly', 60]
9: ['Brand Y', '2000', 'Modem', 'Contr.', 60]
10: ['Brand Y', 'NT', 'Modem', 'Salaried', 60]
11: ['Brand Y', 'XP', 'Modem', 'Part-Time', 60]
12: ['Brand Y', '2000', 'Modem', 'Hourly', 30]
13: ['Brand Y', '98', 'Modem', 'Contr.', 15]
14: ['Brand Y', 'XP', 'Modem', 'Salaried', 15]
15: ['Brand Y', 'NT', 'Modem', 'Part-Time', 15]
16: ['Brand Y', 'XP', 'Modem', 'Part-Time', 30]
17: ['Brand Y', '98', 'Modem', 'Part-Time', 6]
18: ['Brand Y', '2000', 'Modem', 'Salaried', 6]
19: ['Brand Y', '98', 'Modem', 'Salaried', 10]
20: ['Brand Y', 'XP', 'Modem', 'Contr.', 6]
21: ['Brand Y', 'NT', 'Modem', 'Hourly', 10]




Filtering
You can restrict pairs by setting a filtering function to filter_func at
AllPairs constructor.

Sample Code:
from allpairspy import AllPairs

def is_valid_combination(row):
"""
This is a filtering function. Filtering functions should return True
if combination is valid and False otherwise.

Test row that is passed here can be incomplete.
To prevent search for unnecessary items filtering function
is executed with found subset of data to validate it.
"""

n = len(row)

if n > 1:
# Brand Y does not support Windows 98
if "98" == row[1] and "Brand Y" == row[0]:
return False

# Brand X does not work with XP
if "XP" == row[1] and "Brand X" == row[0]:
return False

if n > 4:
# Contractors are billed in 30 min increments
if "Contr." == row[3] and row[4] < 30:
return False

return True

parameters = [
["Brand X", "Brand Y"],
["98", "NT", "2000", "XP"],
["Internal", "Modem"],
["Salaried", "Hourly", "Part-Time", "Contr."],
[6, 10, 15, 30, 60]
]

print("PAIRWISE:")
for i, pairs in enumerate(AllPairs(parameters, filter_func=is_valid_combination)):
print("{:2d}: {}".format(i, pairs))

Output:
PAIRWISE:
0: ['Brand X', '98', 'Internal', 'Salaried', 6]
1: ['Brand Y', 'NT', 'Modem', 'Hourly', 6]
2: ['Brand Y', '2000', 'Internal', 'Part-Time', 10]
3: ['Brand X', '2000', 'Modem', 'Contr.', 30]
4: ['Brand X', 'NT', 'Internal', 'Contr.', 60]
5: ['Brand Y', 'XP', 'Modem', 'Salaried', 60]
6: ['Brand X', '98', 'Modem', 'Part-Time', 15]
7: ['Brand Y', 'XP', 'Internal', 'Hourly', 15]
8: ['Brand Y', 'NT', 'Internal', 'Part-Time', 30]
9: ['Brand X', '2000', 'Modem', 'Hourly', 10]
10: ['Brand Y', 'XP', 'Modem', 'Contr.', 30]
11: ['Brand Y', '2000', 'Modem', 'Salaried', 15]
12: ['Brand Y', 'NT', 'Modem', 'Salaried', 10]
13: ['Brand Y', 'XP', 'Modem', 'Part-Time', 6]
14: ['Brand Y', '2000', 'Modem', 'Contr.', 60]




Data Source: OrderedDict
You can use collections.OrderedDict instance as an argument for AllPairs constructor.
Pairs will be returned as collections.namedtuple instances.

Sample Code:
from collections import OrderedDict
from allpairspy import AllPairs

parameters = OrderedDict({
"brand": ["Brand X", "Brand Y"],
"os": ["98", "NT", "2000", "XP"],
"minute": [15, 30, 60],
})

print("PAIRWISE:")
for i, pairs in enumerate(AllPairs(parameters)):
print("{:2d}: {}".format(i, pairs))

Sample Code:
PAIRWISE:
0: Pairs(brand='Brand X', os='98', minute=15)
1: Pairs(brand='Brand Y', os='NT', minute=15)
2: Pairs(brand='Brand Y', os='2000', minute=30)
3: Pairs(brand='Brand X', os='XP', minute=30)
4: Pairs(brand='Brand X', os='2000', minute=60)
5: Pairs(brand='Brand Y', os='XP', minute=60)
6: Pairs(brand='Brand Y', os='98', minute=60)
7: Pairs(brand='Brand X', os='NT', minute=60)
8: Pairs(brand='Brand X', os='NT', minute=30)
9: Pairs(brand='Brand X', os='98', minute=30)
10: Pairs(brand='Brand X', os='XP', minute=15)
11: Pairs(brand='Brand X', os='2000', minute=15)




Parameterized testing pairwise by using pytest

Parameterized testing: value matrix

Sample Code:
import pytest
from allpairspy import AllPairs

def function_to_be_tested(brand, operating_system, minute) -> bool:
# do something
return True

class TestParameterized(object):
@pytest.mark.parametrize(["brand", "operating_system", "minute"], [
values for values in AllPairs([
["Brand X", "Brand Y"],
["98", "NT", "2000", "XP"],
[10, 15, 30, 60]
])
])
def test(self, brand, operating_system, minute):
assert function_to_be_tested(brand, operating_system, minute)

Output:
$ py.test test_parameterize.py -v
============================= test session starts ==============================
...
collected 16 items

test_parameterize.py::TestParameterized::test[Brand X-98-10] PASSED [ 6%]
test_parameterize.py::TestParameterized::test[Brand Y-NT-10] PASSED [ 12%]
test_parameterize.py::TestParameterized::test[Brand Y-2000-15] PASSED [ 18%]
test_parameterize.py::TestParameterized::test[Brand X-XP-15] PASSED [ 25%]
test_parameterize.py::TestParameterized::test[Brand X-2000-30] PASSED [ 31%]
test_parameterize.py::TestParameterized::test[Brand Y-XP-30] PASSED [ 37%]
test_parameterize.py::TestParameterized::test[Brand Y-98-60] PASSED [ 43%]
test_parameterize.py::TestParameterized::test[Brand X-NT-60] PASSED [ 50%]
test_parameterize.py::TestParameterized::test[Brand X-NT-30] PASSED [ 56%]
test_parameterize.py::TestParameterized::test[Brand X-98-30] PASSED [ 62%]
test_parameterize.py::TestParameterized::test[Brand X-XP-60] PASSED [ 68%]
test_parameterize.py::TestParameterized::test[Brand X-2000-60] PASSED [ 75%]
test_parameterize.py::TestParameterized::test[Brand X-2000-10] PASSED [ 81%]
test_parameterize.py::TestParameterized::test[Brand X-XP-10] PASSED [ 87%]
test_parameterize.py::TestParameterized::test[Brand X-98-15] PASSED [ 93%]
test_parameterize.py::TestParameterized::test[Brand X-NT-15] PASSED [100%]




Parameterized testing: OrderedDict

Sample Code:
import pytest
from allpairspy import AllPairs

def function_to_be_tested(brand, operating_system, minute) -> bool:
# do something
return True

class TestParameterized(object):
@pytest.mark.parametrize(
["pair"],
[
[pair]
for pair in AllPairs(
OrderedDict(
{
"brand": ["Brand X", "Brand Y"],
"operating_system": ["98", "NT", "2000", "XP"],
"minute": [10, 15, 30, 60],
}
)
)
],
)
def test(self, pair):
assert function_to_be_tested(pair.brand, pair.operating_system, pair.minute)





Other Examples
Other examples could be found in examples directory.



Installation

Installation: pip
pip install allpairspy


Installation: apt
You can install the package by apt via a Personal Package Archive (PPA):
sudo add-apt-repository ppa:thombashi/ppa
sudo apt update
sudo apt install python3-allpairspy



Known issues

Not optimal - there are tools that can create smaller set covering
all the pairs. However, they are missing some other important
features and/or do not integrate well with Python.
Lousy written filtering function may lead to full permutation of parameters.
Version 2.0 has become slower (a side-effect of introducing ability to produce n-wise combinations).



Dependencies
Python 3.7+
no external dependencies.


Sponsors



Become a sponsor

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.