Last updated:
0 purchases
AtomPacker 0.3.0
AtomPacker
A Python package for packing nanoclusters into supramolecular cages.
See also:
Documentation
GitHub repository
Issues
Requirements
ASE
biopython
MDAnalysis
numpy
plotly
pyKVFinder
Installation
To install the latest release on PyPI, run:
pip install AtomPacker
Or, to install the development version, run:
pip install git+https://github.com/cnpem/AtomPacker.git
Usage
Packing nanoparticle atoms, based on ASE nanocluster, and filter atoms inside a target cavity.
>>> from AtomPacker import Cage
# 1: Load structure from file
>>> cage = Cage()
>>> cage.load("tests/data/ZOCXOH.pdb")
# Uncomment to preview the cage structure.
>>> # cage.preview()
# 2: Detect cavity
>>> cage.detect_cavity(step=0.25, probe_in=1.4, probe_out=10.0, removal_distance=1.0, volume_cutoff=5.0)
# Uncomment to preview the cavity structure for detection quality control.
>>> # cage.cavity.preview()
# Show volume
>>> print(f"Cavity volume: {cage.cavity.volume} A^3")
# Uncomment to save the cavity structure.
>>> # cage.cavity.save("tests/cavity.pdb")
# 3: Pack nanocluster into the cavity
>>> cage.pack(atom_type="Au", lattice_type="fcc", a=None, b=None, c=None)
# Uncomment to preview the cluster structure for quality control.
>>> # cage.cavity.preview()
# Uncomment to save the cluster structure.
>>> # cage.cluster.save("tests/cluster.pdb")
# Uncomment to preview the cage, cavity and cluster structure.
>>> # cage.preview(show_cavity=True, show_cluster=True)
# Show summary
>>> print(cage.cluster.summary)
Architecture
The package is organized as follows:
classDiagram
direction LR
Cage "1" o-- "1" Cavity : has
Cage "1" o-- "1..*" Cluster : fits in
Cavity "1" <|-- "1..*" Cluster : needs
namespace AtomPacker {
class Cage {
+ numpy.ndarray atomic
+ Cavity cavity
+ numpy.ndarray centroid
+ Cluster cluster
+ numpy.ndarray coordinates
+ MDAnalysis.Universe universe
+ detect_cavity(float step, float probe_in, float probe_out, float removal_distance, float volume_cutoff, str surface, int nthreads, bool verbose, Dict~str,Any~ **kwargs) Cavity
+ load(filename) MDAnalysis.Universe
+ pack(str lattice_type, str atom_type, float atom_radius, float a, float b, float c) ase.cluster.Cluster
+ preview(bool show_cavity, bool show_cluster, str renderer, Dict~str,Any~ **kwargs) void
# _build_cluster(str atom_type, str lattice_type, Tuple~float~ lattice_constants, numpy.ndarray center) ase.cluster.Cluster
# _filter_clashing_atoms(ase.cluster.Cluster cluster, float clashing_tolerance) ase.cluster.Cluster
# _filter_outside_cavity(ase.cluster.Cluster cluster) ase.cluster.Cluster
# _get_cluster_layers(str atom_type, float factor) numpy.ndarray
}
class Cavity {
+ numpy.ndarray coordinates
+ numpy.ndarray grid
+ Universe universe
+ numpy.ndarray volume
# float step
# float probe_in
# float probe_out
# float removal_distance
# numpy.ndarray vertices
# float volume_cutoff
# str surface
+ preview(str renderer, float opacity, Dict~str,Any~ **kwargs) void
+ select_cavity(List~int~ indexes) void
+ save(str filename) void
# _get_universe() Universe
}
class Cluster {
+ str atom_type
+ numpy.ndarray coordinates
+ str lattice_type
+ Tuple~float~ lattice_constants
+ int number_of_atoms
+ int maximum_number_of_atoms
+ pandas.DataFrame summary
+ Universe universe
+ numpy.ndarray volume
# Cavity cavity
# ase.cluster.Cluster cluster
+ diameter(str method) float
+ preview(str renderer, float opacity, Dict~str,Any~ **kwargs) void
+ save(str filename) void
# _get_distances() numpy.ndarray
# _get_lattice_constants() Tuple~float~
# _get_radii() float
# _get_universe() Universe
}
}
Citing
If you find AtomPacker useful for you, please cite the following references:
Guerra, J. V. S., Ribeiro-Filho, H. V., Jara, G. E., Bortot, L. O., Pereira, J. G. C., & Lopes-de-Oliveira, P. S. (2021). pyKVFinder: an efficient and integrable Python package for biomolecular cavity detection and characterization in data science. BMC bioinformatics, 22(1), 607. https://doi.org/10.1186/s12859-021-04519-4.
(manuscript in preparation) Guerra, J. V. S., Jara, G. E., Lopes-de-Oliveira, P. S. & Szalóki, G. (2024) Modellization of confined nanoparticles.
License
The software is licensed under the terms of the GNU General Public License version 3 (GPL3) and is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.