automl-tools 0.2.5

Last updated:

0 purchases

automl-tools 0.2.5 Image
automl-tools 0.2.5 Images
Add to Cart

Description:

automltools 0.2.5

Automl_tools: automl binary classification




Automl_tools is a Python library that implements Gradient Boosting
Installation
The code is packaged for PyPI, so that the installation consists in running:
pip install automl-tools

Colab

Usage
Probabilistic binary example on the Boston housing dataset:
import pandas as pd
from automl_tools import automl_run

train = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/train.csv?token=AAN2ZBDWF77QITK4ARSFIFDABUGAU")
test = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/test.csv?token=AAN2ZBD6TMUC5XSGRTJNVPDABUGCO")

automl_run(train=train,
test=test,
id_col=None,
target_col="Survived",
imp_num="knn",
imp_cat="knn",
processing="binding",
mutual_information=False,
correlation_drop=False,
model_feature_selection=None,
model_run="LR",
augmentation=True,
Stratified=True,
cv=5)

Parameter
imp_num : "gaussian", "arbitrary", "median", "mean", "random", "knn"
imp_cat : "frequent", "constant", "rare", "knn"
processing: "woe", "binding"

Support Binary
model_feature_selection:
default: ["LR", "RF", "LGB"]
LR : LogisticRegression
RF : RandomForestClassifier
SVM : SVC
LS : LASSO
RD : RIDGE
NET : Elasticnet
DT : DecisionTreeClassifier
ET : ExtraTreesClassifier
GB : GradientBoostingClassifier
AB : AdaBoostClassifier
XGB : XGBClassifier
LGB : LGBMClassifier
CTB : CatBoostClassifier
NGB : NGBClassifier

model_run:
default: "LR"
LR : LogisticRegression
RF : RandomForestClassifier
SVM : SVC
LS : LASSO
RD : RIDGE
NET : Elasticnet
DT : DecisionTreeClassifier
ET : ExtraTreesClassifier
GB : GradientBoostingClassifier
AB : AdaBoostClassifier
XGB : XGBClassifier
LGB : LGBMClassifier
CTB : CatBoostClassifier
NGB : NGBClassifier

License
Apache License 2.0.
New features v1.0

multi_class
regression
integrations GCP deploy model CI/CD
integrations AWS deploy model CI/CD

BugFix


0.1.5

fix imputer
fix space hyperparameter
update catboost test



0.1.4

add parameter cv
add confusion Matrix
add comments readme.txt



0.1.3

add parameter id_col
add comments readme.txt



Reference

Jonathan Quiza github.
Jonathan Quiza RumiMLSpark.
Jonathan Quiza linkedin.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.