binarytree 6.5.1

Creator: coderz1093

Last updated:

Add to Cart

Description:

binarytree 6.5.1

Binarytree: Python Library for Studying Binary Trees






Are you studying binary trees for your next exam, assignment or technical interview?
Binarytree is a Python library which lets you generate, visualize, inspect and
manipulate binary trees. Skip the tedious
work of setting up test data, and dive straight into practising your algorithms.
Heaps and
binary search trees are also supported.
Self-balancing search trees like red-black
or AVL will be added in the future.
Check out the documentation for more details.

Binarytree can be used with Graphviz and
Jupyter Notebooks as well:

Requirements
Python 3.7+
Installation
Install via pip:
pip install binarytree --upgrade

For conda users:
conda install binarytree -c conda-forge

Getting Started
Binarytree uses the following class to represent a node:
class Node:

def __init__(self, value, left=None, right=None):
self.value = value # The node value (float/int/str)
self.left = left # Left child
self.right = right # Right child

Generate and pretty-print various types of binary trees:
from binarytree import tree, bst, heap

# Generate a random binary tree and return its root node.
my_tree = tree(height=3, is_perfect=False)

# Generate a random BST and return its root node.
my_bst = bst(height=3, is_perfect=True)

# Generate a random max heap and return its root node.
my_heap = heap(height=3, is_max=True, is_perfect=False)

# Pretty-print the trees in stdout.
print(my_tree)
#
# _______1_____
# / \
# 4__ ___3
# / \ / \
# 0 9 13 14
# / \ \
# 7 10 2
#
print(my_bst)
#
# ______7_______
# / \
# __3__ ___11___
# / \ / \
# 1 5 9 _13
# / \ / \ / \ / \
# 0 2 4 6 8 10 12 14
#
print(my_heap)
#
# _____14__
# / \
# ____13__ 9
# / \ / \
# 12 7 3 8
# / \ /
# 0 10 6
#

Generate trees with letter values instead of numbers:
from binarytree import tree

my_tree = tree(height=3, is_perfect=False, letters=True)

print(my_tree)
#
# ____H____
# / \
# __E__ F__
# / \ / \
# M G J B
# \ / / / \
# O L D I A
#

Build your own trees:
from binarytree import Node

root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.right = Node(4)

print(root)
#
# __1
# / \
# 2 3
# \
# 4
#

Inspect tree properties:
from binarytree import Node

root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)

print(root)
#
# __1
# / \
# 2 3
# / \
# 4 5
#
assert root.height == 2
assert root.is_balanced is True
assert root.is_bst is False
assert root.is_complete is True
assert root.is_max_heap is False
assert root.is_min_heap is True
assert root.is_perfect is False
assert root.is_strict is True
assert root.leaf_count == 3
assert root.max_leaf_depth == 2
assert root.max_node_value == 5
assert root.min_leaf_depth == 1
assert root.min_node_value == 1
assert root.size == 5

# See all properties at once.
assert root.properties == {
'height': 2,
'is_balanced': True,
'is_bst': False,
'is_complete': True,
'is_max_heap': False,
'is_min_heap': True,
'is_perfect': False,
'is_strict': True,
'leaf_count': 3,
'max_leaf_depth': 2,
'max_node_value': 5,
'min_leaf_depth': 1,
'min_node_value': 1,
'size': 5
}

print(root.leaves)
# [Node(3), Node(4), Node(5)]

print(root.levels)
# [[Node(1)], [Node(2), Node(3)], [Node(4), Node(5)]]

Compare and clone trees:
from binarytree import tree

original = tree()

# Clone the binary tree.
clone = original.clone()

# Check if the trees are equal.
original.equals(clone)

Use level-order (breadth-first)
indexes to manipulate nodes:
from binarytree import Node

root = Node(1) # index: 0, value: 1
root.left = Node(2) # index: 1, value: 2
root.right = Node(3) # index: 2, value: 3
root.left.right = Node(4) # index: 4, value: 4
root.left.right.left = Node(5) # index: 9, value: 5

print(root)
#
# ____1
# / \
# 2__ 3
# \
# 4
# /
# 5
#
root.pprint(index=True)
#
# _________0-1_
# / \
# 1-2_____ 2-3
# \
# _4-4
# /
# 9-5
#
print(root[9])
# Node(5)

# Replace the node/subtree at index 4.
root[4] = Node(6, left=Node(7), right=Node(8))
root.pprint(index=True)
#
# ______________0-1_
# / \
# 1-2_____ 2-3
# \
# _4-6_
# / \
# 9-7 10-8
#

# Delete the node/subtree at index 1.
del root[1]
root.pprint(index=True)
#
# 0-1_
# \
# 2-3

Traverse trees using different algorithms:
from binarytree import Node

root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)

print(root)
#
# __1
# / \
# 2 3
# / \
# 4 5
#
print(root.inorder)
# [Node(4), Node(2), Node(5), Node(1), Node(3)]

print(root.preorder)
# [Node(1), Node(2), Node(4), Node(5), Node(3)]

print(root.postorder)
# [Node(4), Node(5), Node(2), Node(3), Node(1)]

print(root.levelorder)
# [Node(1), Node(2), Node(3), Node(4), Node(5)]

print(list(root)) # Equivalent to root.levelorder
# [Node(1), Node(2), Node(3), Node(4), Node(5)]

Convert to list representations:
from binarytree import build

# Build a tree from list representation
values = [7, 3, 2, 6, 9, None, 1, 5, 8]
root = build(values)
print(root)
#
# __7
# / \
# __3 2
# / \ \
# 6 9 1
# / \
# 5 8
#

# Go back to list representation
print(root.values)
# [7, 3, 2, 6, 9, None, 1, 5, 8]

Binarytree supports another representation which is more compact but without
the indexing properties
(this method is often used in Leetcode):
from binarytree import build, build2, Node

# First let's create an example tree.
root = Node(1)
root.left = Node(2)
root.left.left = Node(3)
root.left.left.left = Node(4)
root.left.left.right = Node(5)
print(root)
#
# 1
# /
# __2
# /
# 3
# / \
# 4 5

# First representation is already shown above.
# All "null" nodes in each level are present.
print(root.values)
# [1, 2, None, 3, None, None, None, 4, 5]

# Second representation is more compact but without the indexing properties.
print(root.values2)
# [1, 2, None, 3, None, 4, 5]

# Build trees from the list representations
tree1 = build(root.values)
tree2 = build2(root.values2)
assert tree1.equals(tree2) is True

Check out the documentation for more details.

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.