binning 0.1.1

Last updated:

0 purchases

binning 0.1.1 Image
binning 0.1.1 Images
Add to Cart

Description:

binning 0.1.1

binning and calculate woe,iv value
binning: better for ai engineer to get bin result. Now it supports distance, frequency, enumerate, chi-square, custom bin. it support parallel compute when numbers of features are greater than one hundred or the number of samples are greater than one million, it has better performance.
| when the distribution type of feature is "CONTINUOUS", we can use distance, frequency, chi-square and custom bin. others, we can use enumerate, chi-square and custom bin
| we can calculate woe and iv value by the bin result

特征分箱及 WOE&IV 计算
特征分箱,目前支持等距、等频、枚举、卡方、自定义分箱

分箱方式

连续特征

等距,等频,卡方,自定义


离散特征

枚举,卡方,自定义




合并分箱

根据不同的特征类型进行不同合并分箱,同时支持不进行合并分箱
合并原则

连续特征合并分箱根据最小样本量
离散特征合并分箱根据最小样本量,正负样本比率


等频和枚举分箱方式不进行合并分箱




Quick Start
Installation
pip install binning


Example: bins dict
import pandas as pd
from binning import __version__
from binning.binprocessing import BinProcessing

# version, 获取版本
print(__version__)

# custom log function, 自定义日志函数
def log_fun(mess):
print(f"打印日志信息:{mess}")

# parallel, 是否并行
parallel = False

# distribution: 1 is continuous, 0 is discrete
# distance bin, 等距分箱
data = {"feature": [1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1, 10.1],
"label": [1, 1, 0, 0, 1, 1, 1, 0, 0, 0]}
df = pd.DataFrame(data)
features = {"feature": 1}
kw_params = {"label": "label", "bins": 3}

bp = BinProcessing("DISTANCE_BIN", features, df, parallel, log_fun, **kw_params)
bins_dict = bp.get_bins_dict()
print(bins_dict)

# frequency bin, 等频分箱
data = {"feature": [1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1, 10.1],
"label": [1, 1, 0, 0, 1, 1, 1, 0, 0, 0]}
df = pd.DataFrame(data)
features = {"feature": 1}
kw_params = {"label": "label", "q": 3, "min_samples": 10}

bp = BinProcessing("FREQUENCY_BIN", features, df, parallel, log_fun, **kw_params)
bins_dict = bp.get_bins_dict()
print(bins_dict)

# enumerate bin, 枚举分箱
data = {"feature": ["A", "B", "A", "B", "C", "A", "C", "B", "A", "C"],
"label": [1, 1, 0, 0, 1, 1, 1, 0, 0, 0]}
df = pd.DataFrame(data)
features = {"feature": 0}
kw_params = {"label": "label"}

bp = BinProcessing("ENUMERATE_BIN", features, df, parallel, log_fun, **kw_params)
bins_dict = bp.get_bins_dict()
print(bins_dict)

# chi-square bin, 卡方分箱
data = {"feature": ["A", "B", "A", "B", "C", "A", "C", "B", "A", "C"],
"feature2": [1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1, 10.1],
"label": [1, 1, 0, 0, 1, 1, 1, 0, 0, 0]}
df = pd.DataFrame(data)
features = {"feature": 0, "feature2": 1}
kw_params = {"label": "label"}
# 连续特征参数
kw_params["con_bins"] = 3
kw_params["con_min_samples"] = 5
kw_params["con_threshold"] = 3.8
# 离散特征参数
kw_params["cat_bins"] = 2
kw_params["cat_min_samples"] = 5
kw_params["cat_threshold"] = 3.7

bp = BinProcessing("CHIMERGE_BIN", features, df, parallel, log_fun, **kw_params)
bins_dict = bp.get_bins_dict()
print(bins_dict)

# custome bin, 自定义分箱
data = {"feature": ["A", "B", "A", "B", "C", "A", "C", "B", "A", "C"],
"feature2": [1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1, 10.1],
"label": [1, 1, 0, 0, 1, 1, 1, 0, 0, 0]}
df = pd.DataFrame(data)
features = {"feature": 0, "feature2": 1}
kw_params = {"label": "label"}
# 连续特征参数
kw_params["con_param"] = "2.1,4.1"
kw_params["con_min_samples"] = 5
# 离散特征参数
kw_params["cat_param"] = ["A", "C"]
kw_params["cat_min_samples"] = 3
bp = BinProcessing("CUSTOM_BIN", features, df, parallel, log_fun, **kw_params)
bins_dict = bp.get_bins_dict()
print(bins_dict)


Example: feature dict and woe, iv value
import pandas as pd
from binning.binprocessing import BinProcessing
from binning.calprocessing import CalProcessing

def get_features_dict(df: pd.DataFrame,
features: Dict[str, int]) -> Dict[str, Any]:
"""get features dict

Args:
df (pd.DataFrame): 数据源
features (Dict[str,int]): 特征集

Returns:
Dict[str,Any]: 特征字典
"""
ret_features_dict = {}

con_features = {k: v for k, v in features.items() if v == 1}
cat_features = {k: v for k, v in features.items() if v == 0}
if self.con_cut == BinType.DISTINCE_BIN.value and con_features:
kw_params = {"label": self.label_b, "bins": self.con_group,
"min_samples": self.con_cut_param["minSampleNum"]}
bp = BinProcessing("DISTANCE_BIN", con_features, df, parallel, self._log, **kw_params)
ret_dict = bp.get_features_dict()
ret_features_dict.update(ret_dict)

if self.con_cut == BinType.FREQUENCY_BIN.value and con_features:
kw_params = {"label": self.label_b, "q": self.con_group}
bp = BinProcessing("FREQUENCY_BIN", con_features, df, parallel, self._log, **kw_params)
ret_dict = bp.get_features_dict()
ret_features_dict.update(ret_dict)

if self.cat_cut == BinType.DISCRE_ENUM_BIN.value and cat_features:
kw_params = {"label": self.label_b}
bp = BinProcessing("ENUMERATE_BIN", cat_features, df, parallel, self._log, **kw_params)
ret_dict = bp.get_features_dict()
ret_features_dict.update(ret_dict)

if self.is_con_feature_chi2 or self.is_cat_feature_chi2:
chi_features = self.get_chi2_features_dict(features, con_features, cat_features)
kw_params = {"label": self.label_b}
if self.is_con_feature_chi2 and self.con_cut_param:
kw_params["con_bins"] = self.con_cut_param["maxBinNum"]
kw_params["con_min_samples"] = self.con_cut_param["minSampleNum"]
kw_params["con_threshold"] = self.con_cut_param["threshold"]
if self.is_cat_feature_chi2 and self.cat_cut_param:
kw_params["cat_bins"] = self.cat_cut_param["maxBinNum"]
kw_params["cat_min_samples"] = self.cat_cut_param["minSampleNum"]
kw_params["cat_threshold"] = self.cat_cut_param["threshold"]
bp = BinProcessing("CHIMERGE_BIN", chi_features, df, parallel, self._log, **kw_params)
ret_dict = bp.get_features_dict()
ret_features_dict.update(ret_dict)

if self.single_cut == BinType.CUSTOM_BIN.value:
kw_params = {"label": self.label_b}
kw_params["con_param"] = self.single_bin_param.get('userDefineParam')
kw_params["con_min_samples"] = self.min_sample_num
kw_params["cat_param"] = self.single_bin_param.get('discreteDefineParam')
kw_params["cat_min_samples"] = self.min_sample_num
bp = BinProcessing("CUSTOM_BIN", features, df, parallel, self._log, **kw_params)
ret_dict = bp.get_features_dict()
ret_features_dict.update(ret_dict)

def get_woe_iv(con_bin_type: str,
cat_bin_type: str,
features: Dict[str, int],
features_dict: Dict[str, Any],
bin_params: Dict[str, Any],
min_samples: Dict[str, int],
log: Callable) -> Tuple[Dict[str, Any], pd.Series]:
"""get woe, iv value

Args:
con_bin_type (str): 连续特征分箱类型
cat_bin_type (str): 离散特征分箱类型
features (Dict[str,int]): 特征字典
features_dict (Dict[str,Any]): 特征信息
bin_params (Dict[str,Any]): 分箱参数
min_samples (Dict[str,int]): 最小样本量
log (Callable): 日志函数

Returns:
Tuple[Dict[str,Any], pd.Series]: woe, iv
"""
kw_params = {"con_bin_type": con_bin_type,
"cat_bin_type": cat_bin_type,
"features": features,
"features_dict": features_dict,
"bin_params": bin_params}
if min_samples.get("con_min_samples"):
kw_params["con_min_samples"] = min_samples["con_min_samples"]
if min_samples.get("cat_min_samples"):
kw_params["cat_min_samples"] = min_samples["cat_min_samples"]

cp = CalProcessing("WOEIV", log, **kw_params)
woe, iv = cp.get_cal_val()
return (woe, iv)

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.