Bottleneck 1.4.0

Last updated:

0 purchases

Bottleneck 1.4.0 Image
Bottleneck 1.4.0 Images
Add to Cart

Description:

Bottleneck 1.4.0

Bottleneck is a collection of fast NumPy array functions written in C.
Let’s give it a try. Create a NumPy array:
>>> import numpy as np
>>> a = np.array([1, 2, np.nan, 4, 5])
Find the nanmean:
>>> import bottleneck as bn
>>> bn.nanmean(a)
3.0
Moving window mean:
>>> bn.move_mean(a, window=2, min_count=1)
array([ 1. , 1.5, 2. , 4. , 4.5])

Benchmark
Bottleneck comes with a benchmark suite:
>>> bn.bench()
Bottleneck performance benchmark
Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
Speed is NumPy time divided by Bottleneck time
NaN means approx one-fifth NaNs; float64 used

no NaN no NaN NaN no NaN NaN
(100,) (1000,1000)(1000,1000)(1000,1000)(1000,1000)
axis=0 axis=0 axis=0 axis=1 axis=1
nansum 29.7 1.4 1.6 2.0 2.1
nanmean 99.0 2.0 1.8 3.2 2.5
nanstd 145.6 1.8 1.8 2.7 2.5
nanvar 138.4 1.8 1.8 2.8 2.5
nanmin 27.6 0.5 1.7 0.7 2.4
nanmax 26.6 0.6 1.6 0.7 2.5
median 120.6 1.3 4.9 1.1 5.7
nanmedian 117.8 5.0 5.7 4.8 5.5
ss 13.2 1.2 1.3 1.5 1.5
nanargmin 66.8 5.5 4.8 3.5 7.1
nanargmax 57.6 2.9 5.1 2.5 5.3
anynan 10.2 0.3 52.3 0.8 41.6
allnan 15.1 196.0 156.3 135.8 111.2
rankdata 45.9 1.2 1.2 2.1 2.1
nanrankdata 50.5 1.4 1.3 2.4 2.3
partition 3.3 1.1 1.6 1.0 1.5
argpartition 3.4 1.2 1.5 1.1 1.6
replace 9.0 1.5 1.5 1.5 1.5
push 1565.6 5.9 7.0 13.0 10.9
move_sum 2159.3 31.1 83.6 186.9 182.5
move_mean 6264.3 66.2 111.9 361.1 246.5
move_std 8653.6 86.5 163.7 232.0 317.7
move_var 8856.0 96.3 171.6 267.9 332.9
move_min 1186.6 13.4 30.9 23.5 45.0
move_max 1188.0 14.6 29.9 23.5 46.0
move_argmin 2568.3 33.3 61.0 49.2 86.8
move_argmax 2475.8 30.9 58.6 45.0 82.8
move_median 2236.9 153.9 151.4 171.3 166.9
move_rank 847.1 1.2 1.4 2.3 2.6
You can also run a detailed benchmark for a single function using, for
example, the command:
>>> bn.bench_detailed("move_median", fraction_nan=0.3)
Only arrays with data type (dtype) int32, int64, float32, and float64 are
accelerated. All other dtypes result in calls to slower, unaccelerated
functions. In the rare case of a byte-swapped input array (e.g. a big-endian
array on a little-endian operating system) the function will not be
accelerated regardless of dtype.


Where


download
https://pypi.python.org/pypi/Bottleneck

docs
https://bottleneck.readthedocs.io

code
https://github.com/pydata/bottleneck

mailing list
https://groups.google.com/group/bottle-neck





License
Bottleneck is distributed under a Simplified BSD license. See the LICENSE file
and LICENSES directory for details.


Install
Requirements:


Bottleneck
Python 2.7, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11; NumPy 1.16.0+

Compile
gcc, clang, MinGW or MSVC

Unit tests
pytest

Documentation
sphinx, numpydoc



To install Bottleneck on Linux, Mac OS X, et al.:
$ pip install .
To install bottleneck on Windows, first install MinGW and add it to your
system path. Then install Bottleneck with the command:
$ python setup.py install --compiler=mingw32
Alternatively, you can use the Windows binaries created by Christoph Gohlke:
http://www.lfd.uci.edu/~gohlke/pythonlibs/#bottleneck


Unit tests
After you have installed Bottleneck, run the suite of unit tests:
In [1]: import bottleneck as bn

In [2]: bn.test()
============================= test session starts =============================
platform linux -- Python 3.7.4, pytest-4.3.1, py-1.8.0, pluggy-0.12.0
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/chris/code/bottleneck/.hypothesis/examples')
rootdir: /home/chris/code/bottleneck, inifile: setup.cfg
plugins: openfiles-0.3.2, remotedata-0.3.2, doctestplus-0.3.0, mock-1.10.4, forked-1.0.2, cov-2.7.1, hypothesis-4.32.2, xdist-1.26.1, arraydiff-0.3
collected 190 items

bottleneck/tests/input_modification_test.py ........................... [ 14%]
.. [ 15%]
bottleneck/tests/list_input_test.py ............................. [ 30%]
bottleneck/tests/move_test.py ................................. [ 47%]
bottleneck/tests/nonreduce_axis_test.py .................... [ 58%]
bottleneck/tests/nonreduce_test.py .......... [ 63%]
bottleneck/tests/reduce_test.py ....................................... [ 84%]
............ [ 90%]
bottleneck/tests/scalar_input_test.py .................. [100%]

========================= 190 passed in 46.42 seconds =========================
Out[2]: True
If developing in the git repo, simply run py.test

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.