epsteinlib 0.3.0

Creator: bigcodingguy24

Last updated:

0 purchases

epsteinlib 0.3.0 Image
epsteinlib 0.3.0 Images
Add to Cart

Description:

epsteinlib 0.3.0

EpsteinLib
Version 0.3
Authors: Andreas A. Buchheit, Jonathan Busse, Ruben Gutendorf, DevOps: Jan Schmitz
Contact: [email protected]
EpsteinLib is a C library designed for the fast and efficient computation of the Epstein zeta function for arbitrary multidimensional lattices. In addition to the C library, we also offer a Python package, epsteinlib, which can be easily installed via pip.
Originally studied by Epstein [1,2], the Epstein zeta function forms the basis for computing general multidimensional lattice sums in classical and quantum physics applications [3]. Together with its regularization, it serves as the central ingredient in the singular Euler-Maclaurin (SEM) expansion, which generalizes the 300-year-old Euler summation formula to lattice sums in higher dimensions with physically relevant power-law interactions [4-5]. An efficiently computable representation of the Epstein zeta function is provided in [6,7].
For a d-dimensional lattice Λ=AZd, with A∈Rd×d regular, x,y∈Rd, and ν∈C, the Epstein zeta function is defined by the Dirichlet series
ZΛ,ν|x y|=∑z∈Λ′e−2πiy⋅z|x−z|ν,Re(ν)>d,
which can be meromorphically continued to ν∈C. Here, the primed sum excludes the case z=x.
The Epstein zeta function is implemented in this library as
double complex epsteinZeta(double nu, unsigned int dim, const double *A, const double *x, const double *y);

In the Python package, it is implemented as
def epstein_zeta(nu: float | int, A: NDArray[np.float64], x: NDArray[np.float64], y: NDArray[np.float64]) -> complex

and evalutates to full precision over the whole parameter range up to ten dimensions.
In addition, this library includes the regularized Epstein zeta function, which is analytic around y=0, and is defined via
ZΛ,νreg|x y|=e2πix⋅yZΛ,ν|x y|−s^(y)VΛ,
where VΛ=|detA| is the volume of the elementary lattice cell,
s^(y)=−πν−d2Γ((d−ν)/2)Γ(ν/2)|y|ν−d
is the distributional Fourier transform of |z|−ν, where Γ denotes the gamma function.
In this library, the regularized Epstein zeta function is included as
double complex epsteinZetaReg(double nu, unsigned int dim, const double *A, const double *x, const double *y);

or
def epstein_zeta_reg(nu: float | int, A: NDArray[np.float64], x: NDArray[np.float64], y: NDArray[np.float64]) -> complex

Installation
Install our required dependencies: meson, ninja, pkg-config, python3 e.g. with
# Archlinux
pacman -S meson ninja pkgconf python

# MacOS
brew install meson ninja pkg-config python3

Installing only the Python wrapper with pip
# Create a virtualenvironment and activate it if you are not already inside one.
python3 -m venv .venv && source .venv/bin/activate
# Install epsteinlib
python -m pip install epsteinlib

Installing the C library and the Python wrapper with meson

git clone https://github.com/epsteinlib/epsteinlib.git
cd epsteinlib
meson setup build
meson compile -C build
To test the library, run meson test -C build

Proceed either with system-wide or local installation
System-wide installation
Meson supports a system-wide installation of the compiled library. After that, you can use #include <epsteinZeta.h> and link with gcc -lepsteinZeta. This may require superuser rights.


To install system-wide: meson install -C build.


Try to compile the sample program in test/lattice_sum.c with the command gcc -o lattice_sum lattice_sum.c -lm -lepsteinZeta. You may encounter the problem that the shared library cannot be found. In this case, you need to modify the environment variables. Please continue with the next step. Otherwise, you are done.


Update the environment variables to correctly locate the shared library at runtime. You can find /path/to/library in the output given by meson install.


# Linux
export $LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/library

# MacOS
export $DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/path/to/library


Local installation

Copy the header include/epsteinZeta.h and move the compiled library build/src/libepsteinZeta.so to places of your choice, e. g.

cp include/epsteinZeta.h /your/path/to/include
mv build/src/libepsteinZeta.so /your/path/to/library


To test your library, try to compile test/lattice_sum.c with the command gcc -o lattice_sum lattice_sum.c -lm -L/your/path/to/library -lepsteinZeta -I/your/path/to/include.


View api documentation
See https://epsteinlib.github.io/epsteinlib/
Usage
Minimal working examples for calculating the Madelung constant in 3 dimensions.
in C
// If the library is installed, compile with `gcc -o lattice_sum lattice_sum.c -lm -lepsteinZeta
// If the library is not installed, compile with `gcc -o lattice_sum lattice_sum.c -lm -L/path/to/library -lepsteinZeta -I/path/to/include

#include <complex.h>
#include <math.h>
#include <stdio.h>
#include "epsteinZeta.h"


int main() {

// Madelung constant found in literature
double madelungRef = -1.7475645946331821906362120355443974;
unsigned int dim = 3;
double m[] = {1, 0, 0, 0, 1,
0, 0, 0, 1}; // identity matrix for whole numbers
double x[] = {0, 0, 0}; // no shift
double y[] = {0.5, 0.5, 0.5}; // alternating sum
double nu = 1.0;
double madelung = creal(epsteinZeta(nu, dim, m, x, y));
printf("Madelung sum in 3 dimensions:\t %.16lf\n", creal(madelung));
printf("Reference value:\t\t %.16lf\n", madelungRef);
printf("Relative error:\t\t\t +%.2e\n",
fabs(madelungRef - madelung) / fabs(madelungRef));

return fabs(madelung - madelungRef) > pow(10, -14);
}

in Python
import numpy as np
from epsteinlib import epstein_zeta

madelung_ref = -1.7475645946331821906362120355443974
dim = 3
a = np.identity(dim) # identity matrix for whole numbers
x = np.zeros(dim) # no shift
y = np.full(dim, 0.5) # alternating sum
nu = 1.0
madelung = np.real(epstein_zeta(nu, a, x, y))
print(f"Madelung sum in 3 dimensions:\t {madelung:.16f}")
print(f"Reference value:\t\t {madelung_ref:.16f}")
print(f"Relative error:\t\t\t +{abs(madelung_ref - madelung) / abs(madelung_ref):.2e}")

Development environment
We provide a nix devshell to have a reproducible development environment with the same dependencies across different operating systems. Once you have installed and configured nix starting developing is as easy as running nix develop.
Nix installation instructions
Nix based - recommended

Install nix; Follow the wiki
Configure nix by executing

sudo tee -a /etc/nix/nix.conf <<CFG
max-jobs = auto
#max-jobs = 1
experimental-features = nix-command flakes auto-allocate-uids
auto-allocate-uids = true
auto-optimise-store = true
CFG


systemctl enable --now nix-daemon.socket
usermod -a -G nix-users <your username>
Reboot
cd <path/to/repo>
nix develop or nix run -- <your args>

Nix-Portable based - if you do not have root rights

Install nix-portable:

mkdir -p ~/.local/bin
cd ~/.local/bin

curl -L https://github.com/DavHau/nix-portable/releases/latest/download/nix-portable-$(uname -m) > ./nix-portable
chmod +x ./nix-portable
cat > ./nix <<NIX
#!/usr/bin/env bash
CURDIR=\$(dirname "\$(readlink -f "\$0")")
NP_RUNTIME=bwrap "\$CURDIR/nix-portable" nix \$@
NIX
chmod +x ./nix

export PATH=~/.local/bin:"$PATH"
cd ~
nix run 'nixpkgs#hello'


Configure nix.conf by executing

tee -a ~/.nix-portable/conf/nix.conf <<CFG
max-jobs = auto
#max-jobs = 1
auto-optimise-store = true
CFG


Add .local/bin permanently to your PATH

echo 'PATH=$HOME/.local/bin:"$PATH"' >> ~/.env
echo 'export $(envsubst < .env)' | tee -a .bashrc >> .zshrc


cd <path/to/repo>
nix develop or nix run -- <your args>


Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
References
[1] P. Epstein. “Zur Theorie allgemeiner Zetafunctionen”. Math. Ann. 56 (1903), pp. 615–644.
[2] P. Epstein. “Zur Theorie allgemeiner Zetafunktionen. II”. Math. Ann. 63 (1906), pp. 205–216
[3] Andreas A. Buchheit et al. “Exact Continuum Representation of Long-range Interacting Systems and Emerging Exotic Phases in Unconventional Superconductors”, Phys. Rev. Research 5, 043065 (2023)
[4] Andreas A Buchheit and Torsten Keßler. “On the Efficient Computation of Large Scale Singular Sums with Applications to Long-Range Forces in Crystal Lattices”. J. Sci. Comput. 90.1 (2022), pp. 1–20
[5] Andreas A Buchheit and Torsten Keßler. “Singular Euler–Maclaurin expansion on multidimensional lattices”. Nonlinearity 35.7 (2022), p. 3706
[6] R. Crandall. “Unified algorithms for polylogarithm, L-series, and zeta variants”. Algorithmic Reflections: Selected Works. PSIpress, 2012
[7] Andreas A. Buchheit, Torsten Keßler, and Kirill Serkh. "On the computation of lattice sums without translational invariance". arXiv preprint arXiv:2403.03213.

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.