Land Mark Classifier 2.1.1 | GitLocker.com Product

LANDMarkClassifier 2.1.1

Last updated:

0 purchases

LANDMarkClassifier 2.1.1 Image
LANDMarkClassifier 2.1.1 Images

Free

Languages

Categories

Add to Cart

Description:

LANDMarkClassifier 2.1.1

LANDMark

Implementation of a decision tree ensemble which splits each node using learned linear and non-linear functions.
Install
From PyPI:
pip install LANDMarkClassifier

From source:
git clone https://github.com/jrudar/LANDMark.git
cd LANDMark
pip install .
# or create a virtual environment
python -m venv venv
source venv/bin/activate
pip install .

Interface
An overview of the API can be found here.
Usage and Examples
Examples of how to use LANDMark can be found here.
Contributing
To contribute to the development of LANDMark please read our contributing guide
Projects Using LANDMark
Rudar J, Kruczkiewicz P, Vernygora O, Golding GB, Hajibabaei M, Lung O. Sequence signatures
within the genome of SARS-CoV-2 can be used to predict host source. Microbiol Spectr.
2024 Apr 2;12(4):e0358423. doi: 10.1128/spectrum.03584-23. Epub 2024 Mar 4. PMID: 38436242.

Rudar J, Golding GB, Kremer SC, Hajibabaei M. Decision Tree Ensembles Utilizing Multivariate
Splits Are Effective at Investigating Beta Diversity in Medically Relevant 16S Amplicon
Sequencing Data. Microbiol Spectr. 2023 Mar 6;11(2):e0206522. doi: 10.1128/spectrum.02065-22.
Epub ahead of print. PMID: 36877086; PMCID: PMC10100742.

Rudar, J., Porter, T.M., Wright, M., Golding G.B., Hajibabaei, M. LANDMark: an ensemble
approach to the supervised selection of biomarkers in high-throughput sequencing data.
BMC Bioinformatics 23, 110 (2022). https://doi.org/10.1186/s12859-022-04631-z

References
Rudar, J., Porter, T.M., Wright, M., Golding G.B., Hajibabaei, M. LANDMark: an ensemble
approach to the supervised selection of biomarkers in high-throughput sequencing data.
BMC Bioinformatics 23, 110 (2022). https://doi.org/10.1186/s12859-022-04631-z

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–30.

Kuncheva LI, Rodriguez JJ. Classifier ensembles with a random linear oracle.
IEEE Transactions on Knowledge and Data Engineering. 2007;19(4):500–8.

Geurts P, Ernst D, Wehenkel L. Extremely Randomized Trees. Machine Learning. 2006;63(1):3–42.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Files In This Product: (if this is empty don't purchase this product)

Customer Reviews

There are no reviews.