mixscatter 0.2.3

Creator: bradpython12

Last updated:

Add to Cart

Description:

mixscatter 0.2.3

mixscatter








Table of Contents

Overview
Installation
Documentation
Example Showcase
Contributing
License

Overview
mixscatter is a pure python package for the calculation of scattering functions of
multi-component mixtures of interacting spherical scatterers in the Born approximation
(Rayleigh-Gans-Debye scattering).
Key Features:

Calculation of scattering amplitudes, measurable intensities, form factors, structure factors, and diffusion coefficients.
Flexible construction of systems with arbitrary compositions and complex scattering length density profiles.
Suitable for researchers and developers working on particulate systems characterization.

Take a look at these publications if you are interested:

P. Salgi and R. Rajagopalan, "Polydispersity in colloids: implications to static structure and
scattering", Adv. Colloid Interface Sci. 43, 169-288 (1993)
A. Vrij, "Mixtures of hard spheres in the Percus–Yevick approximation. Light scattering at
finite angles", J. Chem. Phys. 71, 3267-3270 (1979)
R. Botet, S. Kwok and B. Cabane, "Percus-Yevick structure factors made simple",
J. Appl. Cryst. 53, 1570-1582 (2020)
J. Diaz Maier, K. Gaus and J. Wagner, "Measurable structure factors of dense dispersions
containing polydisperse, optically inhomogeneous particles",
arXiv:2404.03470 [cond-mat.soft]

Installation
mixscatter is available on the Python Package Index (PyPI).
Prerequisites
Ensure you have Python 3.10 or higher installed.
Using pip
Install the package via pip:
pip install mixscatter

The source code is currently hosted on GitHub at: https://github.com/joelmaier/mixscatter
Documentation
Find the documentation on GitHub Pages: https://joelmaier.github.io/mixscatter/
Example Showcase
This example demonstrates the fundamental capabilities of mixscatter. For a comprehensive
walk-through, refer to the
Getting Started Guide.
Run this code to
produce the figure below.
import numpy as np
import matplotlib.pyplot as plt

from mixscatter.mixture import Mixture
from mixscatter.scatteringmodel import SimpleCoreShell
from mixscatter.liquidstructure import PercusYevick
from mixscatter import (
measurable_intensity,
measurable_structure_factor,
measurable_diffusion_coefficient
)

if __name__ == "__main__":
plt.ion()
plt.close("all")
fig, ax = plt.subplots(3, 2, figsize=(6, 8), layout="constrained")

# Initialize a particle mixture
mixture = Mixture(radius=[100, 250], number_fraction=[0.4, 0.6])

# Visualize mixture composition
ax[0, 0].stem(mixture.radius, mixture.number_fraction)
ax[0, 0].set_xlim(0, 300)
ax[0, 0].set_ylim(-0.05, 1.05)
ax[0, 0].set_xlabel("particle radius")
ax[0, 0].set_ylabel("number fraction")

# Provide a model for the optical properties of the system
wavevector = np.linspace(1e-3, 7e-2, 1000)
scattering_model = SimpleCoreShell(
wavevector=wavevector,
mixture=mixture,
core_to_total_ratio=0.5,
core_contrast=1.0,
shell_contrast=0.5
)

# Visualize SLD profile
distance = np.linspace(0, 350, 1000)
for i, particle in enumerate(scattering_model.particles):
profile = particle.get_profile(distance)
ax[0, 1].plot(distance, profile, label=f"particle {i + 1}")
ax[0, 1].set_xlim(0, 400)
ax[0, 1].set_xlabel("distance from particle center")
ax[0, 1].set_ylabel("scattering contrast")
ax[0, 1].legend()

# Visualize individual and average form factor(s)
for i, form_factor in enumerate(scattering_model.single_form_factor):
ax[1, 0].plot(wavevector, form_factor, label=f"particle {i + 1}")
ax[1, 0].plot(
wavevector, scattering_model.average_form_factor, label="average"
)
ax[1, 0].set_yscale("log")
ax[1, 0].set_ylim(1e-6, 3e0)
ax[1, 0].legend()
ax[1, 0].set_xlabel("wavevector")
ax[1, 0].set_ylabel("form factor")

# Provide a model for the liquid structure
liquid_structure = PercusYevick(
wavevector=wavevector, mixture=mixture, volume_fraction_total=0.45
)

# Calculate the scattered intensity of the system
intensity = measurable_intensity(liquid_structure, scattering_model)
ax[1, 1].plot(wavevector, intensity)
ax[1, 1].set_yscale("log")
ax[1, 1].set_xlabel("wavevector")
ax[1, 1].set_ylabel("intensity")

# Calculate the experimentally obtainable, measurable structure factor
structure_factor = measurable_structure_factor(
liquid_structure, scattering_model
)
ax[2, 0].plot(wavevector, structure_factor)
ax[2, 0].set_xlabel("wavevector")
ax[2, 0].set_ylabel("structure factor")

# Calculate the effective Stokes-Einstein diffusion coefficient
# which would be obtained from a cumulant analysis in
# dynamic light scattering
diffusion_coefficient = measurable_diffusion_coefficient(
scattering_model, thermal_energy=1.0, viscosity=1.0 / (6.0 * np.pi)
)
# Visualize the apparent hydrodynamic radius, which is
# proportional to 1/diffusion_coefficient
ax[2, 1].plot(wavevector, 1 / diffusion_coefficient)
ax[2, 1].set_xlabel("wavevector")
ax[2, 1].set_ylabel("apparent hydrodynamic radius")

fig.savefig("simple_example_figure.png", dpi=300)


Contributing
Contributions are welcome! If you find any bugs or want to request features,
feel free to get in touch or create an issue.
License
This project is licensed under the MIT License - see the LICENSE file for details.

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.