Last updated:
0 purchases
openaicli 0.0.3
Installation
To install OpenAI CLI in Python virtual environment, run:
pip install openai-cli
Token authentication
OpenAI API requires authentication token, which can be obtained on this page:
https://beta.openai.com/account/api-keys
Provide token to the CLI either through a command-line argument (-t/--token <TOKEN>)
or through an environment variable (OPENAI_API_TOKEN).
Usage
Currently only text completion API is supported.
Example usage:
$ echo "Are cats faster than dogs?" | openai complete -
It depends on the breed of the cat and dog. Generally,
cats are faster than dogs over short distances,
but dogs are better at sustained running.
Interactive mode supported (Press Ctrl+C to exit):
$ openai repl
Prompt: Can generative AI replace humans?
No, generative AI cannot replace humans.
While generative AI can be used to automate certain tasks,
it cannot replace the creativity, intuition, and problem-solving
skills that humans possess.
Generative AI can be used to supplement human efforts,
but it cannot replace them.
Prompt: ^C
Run without arguments to get a short help message:
$ openai
Usage: openai [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.
Commands:
complete Return OpenAI completion for a prompt from SOURCE.
repl Start interactive shell session for OpenAI completion API.
Build a standalone binary using pex and move it into PATH:
$ make openai && mv openai ~/bin/
$ openai repl
Prompt:
Alternative API URL
CLI invokes https://api.openai.com/v1/completions by default.
To override the endpoint URL, set OPENAI_API_URL environment variable.
Example usage
Here’s an example usage scenario, where we first create a Python module
with a Fibonacci function implementation, and then generate a unit test for it:
$ mkdir examples
$ touch examples/__init__.py
$ echo "Write Python function to calculate Fibonacci numbers" | openai complete - | black - > examples/fib.py
$ (echo 'Write unit tests for this Python module named "fib":\n'; cat examples/fib.py) | openai complete - | black - > examples/test_fib.py
$ pytest -v examples/test_fib.py
============================== test session starts ==============================
examples/test_fib.py::TestFibonacci::test_eighth_fibonacci_number PASSED [ 10%]
examples/test_fib.py::TestFibonacci::test_fifth_fibonacci_number PASSED [ 20%]
examples/test_fib.py::TestFibonacci::test_first_fibonacci_number PASSED [ 30%]
examples/test_fib.py::TestFibonacci::test_fourth_fibonacci_number PASSED [ 40%]
examples/test_fib.py::TestFibonacci::test_negative_input PASSED [ 50%]
examples/test_fib.py::TestFibonacci::test_ninth_fibonacci_number PASSED [ 60%]
examples/test_fib.py::TestFibonacci::test_second_fibonacci_number PASSED [ 70%]
examples/test_fib.py::TestFibonacci::test_seventh_fibonacci_number PASSED [ 80%]
examples/test_fib.py::TestFibonacci::test_sixth_fibonacci_number PASSED [ 90%]
examples/test_fib.py::TestFibonacci::test_third_fibonacci_number PASSED [100%]
=============================== 10 passed in 0.02s ==============================
$ cat examples/fib.py
def Fibonacci(n):
if n < 0:
print("Incorrect input")
# First Fibonacci number is 0
elif n == 1:
return 0
# Second Fibonacci number is 1
elif n == 2:
return 1
else:
return Fibonacci(n - 1) + Fibonacci(n - 2)
$ cat examples/test_fib.py
import unittest
from .fib import Fibonacci
class TestFibonacci(unittest.TestCase):
def test_negative_input(self):
self.assertEqual(Fibonacci(-1), None)
def test_first_fibonacci_number(self):
self.assertEqual(Fibonacci(1), 0)
def test_second_fibonacci_number(self):
self.assertEqual(Fibonacci(2), 1)
def test_third_fibonacci_number(self):
self.assertEqual(Fibonacci(3), 1)
def test_fourth_fibonacci_number(self):
self.assertEqual(Fibonacci(4), 2)
def test_fifth_fibonacci_number(self):
self.assertEqual(Fibonacci(5), 3)
def test_sixth_fibonacci_number(self):
self.assertEqual(Fibonacci(6), 5)
def test_seventh_fibonacci_number(self):
self.assertEqual(Fibonacci(7), 8)
def test_eighth_fibonacci_number(self):
self.assertEqual(Fibonacci(8), 13)
def test_ninth_fibonacci_number(self):
self.assertEqual(Fibonacci(9), 21)
if __name__ == "__main__":
unittest.main()
$ (echo "Add type annotations for this Python code"; cat examples/fib.py) | openai complete - | black - | tee tmp && mv tmp examples/fib.py
def Fibonacci(n: int) -> int:
if n < 0:
print("Incorrect input")
# First Fibonacci number is 0
elif n == 1:
return 0
# Second Fibonacci number is 1
elif n == 2:
return 1
else:
return Fibonacci(n - 1) + Fibonacci(n - 2)
$ mypy examples/fib.py
examples/fib.py:1: error: Missing return statement [return]
Found 1 error in 1 file (checked 1 source file)
$ (echo "Fix mypy warnings in this Python code"; cat examples/fib.py; mypy examples/fib.py) | openai complete - | black - | tee tmp && mv tmp examples/fib.py
def Fibonacci(n: int) -> int:
if n < 0:
print("Incorrect input")
# First Fibonacci number is 0
elif n == 1:
return 0
# Second Fibonacci number is 1
elif n == 2:
return 1
else:
return Fibonacci(n - 1) + Fibonacci(n - 2)
return None # Added return statement
$ mypy examples/fib.py
examples/fib.py:12: error: Incompatible return value type (got "None", expected "int") [return-value]
Found 1 error in 1 file (checked 1 source file)
$ (echo "Fix mypy warnings in this Python code"; cat examples/fib.py; mypy examples/fib.py) | openai complete - | black - | tee tmp && mv tmp examples/fib.py
def Fibonacci(n: int) -> int:
if n < 0:
print("Incorrect input")
# First Fibonacci number is 0
elif n == 1:
return 0
# Second Fibonacci number is 1
elif n == 2:
return 1
else:
return Fibonacci(n - 1) + Fibonacci(n - 2)
return 0 # Changed return statement to return 0
$ mypy examples/fib.py
Success: no issues found in 1 source file
$ (echo "Rewrite these tests to use pytest.parametrized"; cat examples/test_fib.py) | openai complete - | black - | tee tmp && mv tmp examples/test_fib.py
import pytest
from .fib import Fibonacci
@pytest.mark.parametrize(
"n, expected",
[(1, 0), (2, 1), (3, 1), (4, 2), (5, 3), (6, 5), (7, 8), (8, 13), (9, 21), (10, 34)],
)
def test_fibonacci(n, expected):
assert Fibonacci(n) == expected
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.