orq-ai-sdk 2.13.0

Last updated:

0 purchases

orq-ai-sdk 2.13.0 Image
orq-ai-sdk 2.13.0 Images
Add to Cart

Description:

orqaisdk 2.13.0

Build AI Applications from Playground to Production

orq.ai Python SDK
The orq.ai Python library enables easy orq.ai REST API integration in Python 3.7+ apps, offering typed request/response
elements and httpx-based sync/async clients
Documentation
The REST API documentation can be found on docs.orq.ai.
Installation
# install from PyPI
pip install orq-ai-sdk

Usage
You can get your workspace API key from the settings section in your orq.ai
workspace. https://my.orq.ai/<workspace>/settings/developers
import os

from orq_ai_sdk import OrqAI

client = OrqAI(
api_key=os.environ.get("ORQ_API_KEY", "__API_KEY__"),
environment="production"
)

generation = client.deployments.invoke(
key="customer_service",
context={"environments": "production", "country": "NLD"},
inputs={"firstname": "John", "city": "New York"},
metadata={"customer_id": "Qwtqwty90281"},
)

Async usage
Simply import AsyncOrqAI instead of OrqAI and use await with each API call:
import os
import asyncio
from orq_ai_sdk import AsyncOrqAI

client = AsyncOrqAI(
api_key=os.environ.get("ORQ_API_KEY", "__API_KEY__"),
environment="production"
)


async def main() -> None:
generation = await client.deployments.invoke(
key="customer_service",
context={"environments": "production", "country": "NLD"},
inputs={"firstname": "John", "city": "New York"},
metadata={"customer_id": "Qwtqwty90281"},
)

print(generation.choices[0].message.content)


asyncio.run(main())

Deployments

The Deployments API delivers text outputs, images or tool calls based on the configuration established within Orq
for your deployments. Additionally, this API supports streaming. To ensure ease of use and minimize errors, using the
code snippets from the Orq Admin panel is highly recommended.
Invoke a deployment
invoke()
deployment = await client.deployments.invoke(
key="customer_service",
context={"environments": "production", "country": "NLD"},
inputs={"firstname": "John", "city": "New York"},
metadata={"customer_id": "Qwtqwty90281"},
)

print(deployment.choices[0].message.content)

invoke_with_stream()
stream = client.deployments.invoke_with_stream(
key="customer_service",
context={"environments": "production", "country": "NLD"},
inputs={"firstname": "John", "city": "New York"},
metadata={"customer_id": "Qwtqwty90281"},
)

await
for chunk in stream:

if chunk.is_final:
print("Stream is finished")

print(chunk.choices[0].message.content or "", end="")

Adding messages as part of your request
If you are using the invoke method, you can include messages in your request to the model. The messages property
allows you to combine chat_history with the prompt configuration in Orq, or to directly send messages to the
model if you are managing the prompt in your code.
generation = client.deployments.invoke(
key="customer_service",
context={
"language": [],
"environments": []
},
metadata={
"custom-field-name": "custom-metadata-value"
},
inputs={"firstname": "John", "city": "New York"},
messages=[{
"role": "user",
"content": "A customer is asking about the latest software update features. Generate a detailed and informative response highlighting the key new features and improvements in the latest update.",
}]
)

Logging metrics to the deployment configuration
After invoking, streaming or getting the configuration of a deployment, you can use the add_metrics method to add
information to the deployment.
await generation.add_metrics(
chain_id="c4a75b53-62fa-401b-8e97-493f3d299316",
conversation_id="ee7b0c8c-eeb2-43cf-83e9-a4a49f8f13ea",
user_id="e3a202a6-461b-447c-abe2-018ba4d04cd0",
feedback={"score": 100},
metadata={
"custom": "custom_metadata",
"chain_id": "ad1231xsdaABw",
},
messages=[{
"role": "user",
"content": "A customer is asking about the latest software update features. Generate a detailed and informative response highlighting the key new features and improvements in the latest update.",
}]
)

Get deployment configuration
get_config()
prompt_config = client.deployments.get_config(
key="customer_service",
context={"environments": "production", "country": "NLD"},
inputs={"firstname": "John", "city": "New York"},
metadata={"customer_id": "Qwtqwty90281"},
)

print(prompt_config.to_dict())

Logging metrics to the deployment configuration
After invoking, streaming or getting the configuration of a deployment, you can use the add_metrics method to add
information to the deployment.
prompt_config.add_metrics(
chain_id="c4a75b53-62fa-401b-8e97-493f3d299316",
conversation_id="ee7b0c8c-eeb2-43cf-83e9-a4a49f8f13ea",
user_id="e3a202a6-461b-447c-abe2-018ba4d04cd0",
feedback={"score": 100},
metadata={
"custom": "custom_metadata",
"chain_id": "ad1231xsdaABw",
},
usage={
"prompt_tokens": 100,
"completion_tokens": 900,
"total_tokens": 1000,
},
performance={
"latency": 9000,
"time_to_first_token": 250,
},
)

Logging LLM responses

Whether you use the get_config or invoke, you can log the model generations to the deployment. Here are some
examples of how to do it.
Logging the completion choices the model generated for the input prompt
generation.add_metrics(
choices=[
{
"index": 0,
"finish_reason": "assistant",
"message": {
"role": "assistant",
"content": "Dear customer: Thank you for your interest in our latest software update! We're excited to share with you the new features and improvements we've rolled out. Here's what you can look forward to in this update",
},
},
]
)

Logging the completion choices the model generated for the input prompt
You can save the images generated by the model in Orq. If the image format is base64 we always store it as
a png.
generation.add_metrics(
choices=[
{
"index": 0,
"finish_reason": 'stop',
"message": {
"role": "assistant",
"url": "<image_url>"
},
},
],
)

Logging the output of the tool calls
generation.add_metrics(
choices=[
{
"index": 0,
"message": {
"role": "assistant",
"content": None,
"tool_calls": [
{
"type": "function",
"id": "call_pDBPMMacPXOtoWhTWibW1D94",
"function": {
"name": "get_weather",
"arguments": '{"location":"San Francisco, CA"}',
},
},
],
},
"finish_reason": 'tool_calls',
}
]
)

API documentation
Contacts
Feedback
Webhooks

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.