pandas-ml-common 0.2.7

Last updated:

0 purchases

pandas-ml-common 0.2.7 Image
pandas-ml-common 0.2.7 Images
Add to Cart

Description:

pandasmlcommon 0.2.7

The pandas ml common module
This module holds all common extensions and utilities for the pandas ml quant stack.
Feel free to study the examples as well.

easy joining of data frames with multi indexes

from pandas_ml_common import pd, np

df1 = pd.DataFrame({"a": np.random.random(10), "b": np.random.random(10)})
print(df1.inner_join(df1, prefix_left='A', prefix='B', force_multi_index=True).to_markdown())





('A', 'a')
('A', 'b')
('B', 'a')
('B', 'b')




0
0.907892
0.726913
0.907892
0.726913


1
0.602275
0.134278
0.602275
0.134278


2
0.264399
0.207429
0.264399
0.207429


3
0.559751
0.816759
0.559751
0.816759


4
0.951172
0.797524
0.951172
0.797524


5
0.504332
0.51996
0.504332
0.51996


6
0.765235
0.17908
0.765235
0.17908


7
0.388691
0.644103
0.388691
0.644103


8
0.663636
0.678879
0.663636
0.678879


9
0.291603
0.0164627
0.291603
0.0164627




access columns with regex

df4 = pd.DataFrame({"a_22_a": np.random.random(1), "b_21_b": np.random.random(1)})
df4._[r'.*\d+_.']





a_22_a
b_21_b




0
0.22039
0.0374084




easy access multi level index

df1.unique_level_columns(0)

['A', 'B']

df1.add_multi_index('Z', axis=1)


data splitting, sampling and folding (aka cross validation)

from pandas_ml_common import Sampler, XYWeight, random_splitter

df2 = pd.DataFrame({"c": np.random.random(10)})
sampler = Sampler(XYWeight(df1, df2), splitter=random_splitter(0.5))

for batches in sampler.sample_for_training():
for batch in batches:
print(batch)


access to nested numpy arrays in data frame columns (df._.values)

df3 = pd.DataFrame({"a": [[1, 2], [3, 4], [5, 6]]})
df3._.values

array([[1, 2],
[3, 4],
[5, 6]])


dynamic method call providing suitable *args and **kwargs (dependency injection)

from pandas_ml_common import call_callable_dynamic_args

def adder(a, b):
return a + b

call_callable_dynamic_args(adder, a=12, b=10, c='illegal')

22


numpy utils

from pandas_ml_common import np_nans

np_nans((3, 3))

array([[nan, nan, nan],
[nan, nan, nan],
[nan, nan, nan]])


from pandas_ml_common import temp_seed

with temp_seed(42):
print(np.random.random(2))

np.random.random(2)


[0.37454012 0.95071431]
array([0.69373278, 0.69790163])


serialization utils

from pandas_ml_common import serializeb, deserializeb

deserializeb(serializeb(np.array([1, 2, 3])))
array([1, 2, 3])


re-scalings

from pandas_ml_common import ReScaler

x = np.arange(0, 1, .1)
rescaler = ReScaler((0, 1), (5, -5))

rescaler(x)
array([ 5., 4., 3., 2., 1., 0., -1., -2., -3., -4.])

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.