Last updated:
0 purchases
pandasnet 1.0
pandasnet
pandasnet is a python package build on top of pythonnet.
It provides additional data conversions for pandas, numpy and datetime
Prerequisites
python 3.6 or higher.
dotnet.
dotnet also provides scripts to proceed the installation by command line.
Installation
pip install pandasnet
Features
To load the converter you need to import the package once in your python environment.
If the dotnet clr isn't started yet through the pytonnet package the import will.
import pandasnet
We construct a simple C# function to test conversion
using System;
using System.Collections.Generic;
namespace LibForTests
{
public class PandasNet
{
public static Dictionary<string, Array> BasicDataFrame(Dictionary<string, Array> df)
=> df;
}
}
We build this function into a library named LibForTests.dll.
We load this library into our python environment then use it.
import clr
import pandasnet # Load the converters
import pandas as pd
from datetime import datetime
# Load your dll
clr.AddReference('LibForTests.dll')
from LibForTests import PandasNet as pdnet
x = pd.DataFrame({
'A': [1, 2, 3],
'B': [1.23, 1.24, 1.22],
'C': ['foo', 'bar', 'other'],
'D': [datetime(2021, 1, 22), datetime(2021, 1, 23), datetime(2021, 1, 24)]
})
y = pdnet.BasicDataFrame(x)
print(y)
Below an exhausitve list of supported data convertions.
Python -> .Net
Python
.Net
datetime.datetime
DateTime
datetime.date
DateTime
datetime.timedelta
TimeSpan
datetime.time
TimeSpan
numpy.ndarray(dtype=bool_)
bool[]
numpy.ndarray(dtype=int8)
sbyte[]
numpy.ndarray(dtype=int16)
short[]
numpy.ndarray(dtype=int32)
int[]
numpy.ndarray(dtype=int64)
long[]
numpy.ndarray(dtype=uint8)
byte[]
numpy.ndarray(dtype=uint16)
ushort[]
numpy.ndarray(dtype=uint32)
uint[]
numpy.ndarray(dtype=uint64)
ulong[]
numpy.ndarray(dtype=float32)
float[]
numpy.ndarray(dtype=float64)
double[]
numpy.ndarray(dtype=datetime64)
DateTime[]
numpy.ndarray(dtype=timedelta64)
TimeSpan[]
numpy.ndarray(dtype=str)
string[]
pandas._libs.tslibs.timestamps.Timestamp
DateTime
pandas._libs.tslibs.timedeltas.TimeDelta
TimeSpan
pandas.core.series.Series
Array
pandas.core.frame.DataFrame
Dictionary[string, Array]
.Net -> Python
.Net
Python
DateTime
datetime.datetime
TimeSpan
datetime.timedelta
bool[]
numpy.ndarray(dtype=bool_)
sbyte[]
numpy.ndarray(dtype=int8)
short[]
numpy.ndarray(dtype=int16)
int[]
numpy.ndarray(dtype=int32)
long[]
numpy.ndarray(dtype=int64)
byte[]
numpy.ndarray(dtype=uint8)
ushort[]
numpy.ndarray(dtype=uint16)
uint[]
numpy.ndarray(dtype=uint32)
ulong[]
numpy.ndarray(dtype=uint64)
float[]
numpy.ndarray(dtype=float32)
double[]
numpy.ndarray(dtype=float64)
DateTime[]
numpy.ndarray(dtype=datetime64)
TimeSpan[]
numpy.ndarray(dtype=timedelta64)
Dictionary[string, Array]
pandas.core.frame.DataFrame
Contributing
Issue tracker: https://github.com/fdieulle/pandasnet/issues
If you want to checkout the project and propose your own contribution, you will need to setup it following few steps:
Create a virtual environment:
python -m venv venv
Activate your virtual environment:
venv/Scripts/activate
Install package dependencies
pip install -r requirements.txt
License
This project is open source under the MIT license.
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.