parameterize-jobs 0.2.0

Last updated:

0 purchases

parameterize-jobs 0.2.0 Image
parameterize-jobs 0.2.0 Images
Add to Cart

Description:

parameterizejobs 0.2.0

parameterize_jobs is a lightweight, pure-python toolkit for concisely and clearly creating large, parameterized, mapped job specifications.

Free software: MIT license
Documentation: https://parameterize-jobs.readthedocs.io


Features

Expand a job’s dimensionality by multiplying ComponentSet, Constant, or ParallelComponentSet objects
Extend the number of jobs by adding ComponentSet, Constant, or ParallelComponentSet objects
Jobs are provided to functions as dictionaries of parameters
The helper decorator @expand_kwargs turns these kwarg dictionaries into
named argument calls
Works seamlessly with many task running frameworks, including dask’s client.map and profiling tools



TODOs
View and submit issues on the issues page.


Quickstart
ComponentSet objects are the base objects, and can be defined with any number of named iterables:
>>> import parameterize_jobs as pjs

>>> a = pjs.ComponentSet(a=range(5))
>>> a
<ComponentSet {'a': 5}>
These objects have defined lengths (if the provided iterable has a defined length), and can be indexed and iterated over:
>>> len(a)
5

>>> a[0]
{'a': 0}

>>> list(a)
[{'a': 0},
{'a': 1},
{'a': 2},
{'a': 3},
{'a': 4}]
Adding two ComponentSet objects extends the total job length
>>> a2 = pjs.ComponentSet(a=range(3))

>>> a+a2
<MultiComponentSet [{'a': 5}, {'a': 3}]>

>>> len(a+a2)
8

>>> list(a+a2)

[{'a': 0},
{'a': 1},
{'a': 2},
{'a': 3},
{'a': 4},
{'a': 0},
{'a': 1},
{'a': 2}]
Multiplying two ComponentSet objects expands their dimensionality:
>>> b = pjs.ComponentSet(b=range(3))

>>> a*b
<ComponentSet {'a': 5, 'b': 3}>

>>> len(a*b)
15

>>> (a*b)[-1]
{'a': 4, 'b': 2}

>>> list(a*b)
[{'a': 0, 'b': 0},
{'a': 0, 'b': 1},
{'a': 0, 'b': 2},
{'a': 1, 'b': 0},
{'a': 1, 'b': 1},
{'a': 1, 'b': 2},
{'a': 2, 'b': 0},
{'a': 2, 'b': 1},
{'a': 2, 'b': 2},
{'a': 3, 'b': 0},
{'a': 3, 'b': 1},
{'a': 3, 'b': 2},
{'a': 4, 'b': 0},
{'a': 4, 'b': 1},
{'a': 4, 'b': 2}]
These parameterized job specifications can be used in mappable jobs. The helper decorator expand_kwargs modifies a function to accept a dictionary and expands them into keyword arguments:
>>> @pjs.expand_kwargs
... def my_simple_func(a, b, c=1):
... return a * b * c

>>> list(map(my_simple_func, a*b))
[0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 2, 4, 6, 8, 0, 3, 6, 9, 12]
Jobs do not have to be the combinatorial product of all components:
>>> ab1 = pjs.ComponentSet(a=[0, 1], b=[0, 1])
>>> ab2 = pjs.ComponentSet(a=[10, 11], b=[-1, 1])

>>> list(map(my_simple_func, ab1 + ab2))
[0, 0, 0, 1, -10, -11, 10, 11]
A Constant object is simply a ComponentSet object defined with single values passed as keyword arguments rather than iterables passed as keyword arguments:
>>> c = pjs.Constant(c=5)

>>> list(map(my_simple_func, (ab1 + ab2) * c))
[0, 0, 0, 5, -50, -55, 50, 55]
A ParallelComponentSet object is simply a MultiComponentSet object where each Component is a Constant object.
>>> pcs = pjs.ParallelComponentSet(a = [1, 2],
b = [10, 20])

>>> list(map(my_simple_func, pcs))
[10, 40]
Arbitrarily complex combinations of ComponentSets can be created:
>>> c1 = pjs.Constant(c=1)
>>> c2 = pjs.Constant(c=2)

>>> list(map(my_simple_func, (ab1 + ab2) * c1 + (ab1 + ab2) * c2))
[0, 0, 0, 1, -10, -11, 10, 11, 0, 0, 0, 2, -20, -22, 20, 22]
Anything can be inside a ComponentSet iterable, including data, functions, or other objects:
>>> transforms = (
... pjs.Constant(transform=lambda x: x, transform_name='linear')
... + pjs.Constant(transform=lambda x: x**2, transform_name='quadratic'))
...

>>> fps = pjs.Constant(
... read_pattern='source/my-fun-data_{year}.csv',
... write_pattern='transformed/my-fun-data_{transform_name}_{year}.csv')

>>> years = pjs.ComponentSet(year=range(1980, 2018))

>>> @pjs.expand_kwargs
... def process_data(read_pattern, write_pattern, transform, transform_name, year):
...
... df = pd.read_csv(read_pattern.format(year=year))
...
... transformed = transform(df)
...
... transformed.to_csv(
... write_pattern.format(
... transform_name=transform_name,
... year=year))
...

>>> _ = list(map(process_data, transforms * fps * years))
This works seamlessly with dask’s client.map to provide intuitive job parameterization:
>>> import dask.distributed as dd
>>> client = dd.LocalClient()
>>> futures = client.map(my_simple_func, (ab1 + ab2) * c1 + (ab1 + ab2) * c2)
>>> dd.progress(futures)

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.