parapply 0.0.2

Last updated:

0 purchases

parapply 0.0.2 Image
parapply 0.0.2 Images
Add to Cart

Description:

parapply 0.0.2

Parapply
A simple drop-in replacement for parallelized pandas apply() on large Series / DataFrames, using joblib. Works by dividing the Series / DataFrame into multiple chunks and running apply concurrently. As a rule of thumb, use parapply only if you have 10 million rows and above (see benchmark below).
Install by running pip install parapply. Requires joblib, numpy, and pandas (obviously!)
Simple Usage
Series: parapply(srs, fun) instead of srs.apply(fun)
DataFrames: parapply(df, fun, axis) instead of df.apply(fun, axis)
For more fine grain control:
+ n_jobs to decide number of concurrent jobs,
+ n_chunks for number of chunks to split the Series / DataFrame
Examples:
import pandas as pd
import numpy as np
from parapply import parapply

# Series example
np.random.seed(0)
srs = pd.Series(np.random.random(size=(5, )))
pd_apply_result = srs.apply(lambda x: x ** 2)
parapply_result = parapply(srs, lambda x: x ** 2)
print(pd_apply_result)

# 0 0.301196
# 1 0.511496
# 2 0.363324
# 3 0.296898
# 4 0.179483
# dtype: float64

print(parapply_result)

# 0 0.301196
# 1 0.511496
# 2 0.363324
# 3 0.296898
# 4 0.179483
# dtype: float64

# DataFrame example with axis = 1
np.random.seed(1)
df = pd.DataFrame(data={
'a': np.random.random(size=(5, )),
'b': np.random.random(size=(5, )),
'c': np.random.random(size=(5, )),
})

pd_apply_result = df.apply(sum, axis=1)
parapply_result = parapply(df, sum, axis=1)
print(pd_apply_result)

# 0 0.928555
# 1 1.591804
# 2 0.550127
# 3 1.577217
# 4 0.712960
# dtype: float64

print(parapply_result)

# 0 0.928555
# 1 1.591804
# 2 0.550127
# 3 1.577217
# 4 0.712960
# dtype: float64

Refer to docstrings for more information.
Quick and dirty benchmarks
Ran a quick and dirty benchmark to compare time taken to apply lambda x:x ** 2 to Series of varying length using pandas apply and parapply on multiple n_jobs settings:

This semilog plot above shows that significant runtime differences between pandas apply and parapply show up at 10 million data points and onwards.
Acknowledgements
Thanks to @aaronlhe for introducing me to the world of unit tests!

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.