Last updated:
0 purchases
performanceanalysis 0.1.8
Features
Performance indicators calculation
Supports single time series data and multiple time series data with different time spans
Time series visualization
Installation
You can install “performance-analysis” via ‘pip’_ from ‘PyPI’_:
$ pip install performance-analysis
Usage
Performance part
from performance_analysis.Performance import Performance
# Input return data
raw_return_data = pd.read_csv("./raw_return_data.csv")
# Just some examples. For more functions, you can explore the package
ann_rtn = Performance.annualized_return(raw_return_data, period = Constant.DAILY, logreturn = False)
var = Performance.value_at_risk(raw_return_data, significance_level = 0.05)
sharpe = Performance.sharpe_ratio(raw_return_data, risk_free = 0., logreturn = False)
calmar = Performance.calmar_ratio(raw_return_data, period = Constant.DAILY, logreturn = False)
Computes personal specified indicators
'''
indicators = {
0 : annualized_return,
1 : annualized_sd,
2 : max_drawdown,
3 : sharpe_ratio,
4 : calmar_ratio,
5 : burke_ratio,
6 : downside_risk,
7 : sortino_ratio,
8 : tracking_error,
9 : information_ratio,
10 : capm_beta,
11 : capm_alpha,
12 : treynor_ratio,
13 : skewness,
14 : kurtosis,
15 : value_at_risk,
16 : conditional_value_at_risk,
17 : omega_ratio,
18 : tail_dependence,
19 : TDC,
}
'''
args = (0,1,2,3,4)
kwargs = {
"annualized_return" : {"returns" : single_return_data},
"annualized_sd" : {"returns" : single_return_data},
"max_drawdown" : {"returns" : single_return_data},
"sharpe_ratio" : {"returns" : single_return_data},
"calmar_ratio" : {"returns" : single_return_data}
}
performance = Performance.performance_dashboard(*args, **kwargs)
Plotting part
from performance_analysis.Plotting import Plotting
# read data, set index and convert to datatime
single_return_data = pd.read_csv("./single_return_data.csv")
single_return_data.set_index(['Date'],inplace=True)
single_return_data.index = pd.to_datetime(single_return_data.index, format='%Y%m%d', errors='coerce')
Plotting.plot_cum_return_and_drawdown(single_return_data)
Plotting.plot_monthly_return_heatmap(single_return_data, show_text = True)
Plotting.plot_seasonal_effect(single_return_data)
License
Distributed under the terms of the ‘MIT’_ license, “performance-analysis” is free and open source software
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.