Last updated:
0 purchases
physt 0.8.0
physt
P(i/y)thon h(i/y)stograms. Inspired (and based on) numpy.histogram, but designed for humans(TM) on steroids(TM).
Create rich histogram objects from numpy or dask arrays, from pandas and polars series/dataframes,
from xarray datasets and a few more types of objects. Manipulate them with ease, plot them with matplotlib,
vega or plotly.
In short, whatever you want to do with histograms, physt aims to be on your side.
Simple example
from physt import h1
# Create the sample
heights = [160, 155, 156, 198, 177, 168, 191, 183, 184, 179, 178, 172, 173, 175,
172, 177, 176, 175, 174, 173, 174, 175, 177, 169, 168, 164, 175, 188,
178, 174, 173, 181, 185, 166, 162, 163, 171, 165, 180, 189, 166, 163,
172, 173, 174, 183, 184, 161, 162, 168, 169, 174, 176, 170, 169, 165]
hist = h1(heights, 10) # <--- get the histogram data
hist << 190 # <--- add a forgotten value
hist.plot() # <--- and plot it
2D example
from physt import h2
import seaborn as sns
iris = sns.load_dataset('iris')
iris_hist = h2(iris["sepal_length"], iris["sepal_width"], "pretty", bin_count=[12, 7], name="Iris")
iris_hist.plot(show_zero=False, cmap="gray_r", show_values=True);
3D directional example
import numpy as np
from physt import special_histograms
# Generate some sample data
data = np.empty((1000, 3))
data[:,0] = np.random.normal(0, 1, 1000)
data[:,1] = np.random.normal(0, 1.3, 1000)
data[:,2] = np.random.normal(1, .6, 1000)
# Get histogram data (in spherical coordinates)
h = special_histograms.spherical(data)
# And plot its projection on a globe
h.projection("theta", "phi").plot.globe_map(density=True, figsize=(7, 7), cmap="rainbow")
See more in docstring's and notebooks:
Basic tutorial: http://nbviewer.jupyter.org/github/janpipek/physt/blob/dev/doc/tutorial.ipynb
Binning: http://nbviewer.jupyter.org/github/janpipek/physt/blob/dev/doc/binning.ipynb
2D histograms: http://nbviewer.jupyter.org/github/janpipek/physt/blob/dev/doc/2d_histograms.ipynb
Special histograms (polar, spherical, cylindrical - beta): http://nbviewer.jupyter.org/github/janpipek/physt/blob/dev/doc/special_histograms.ipynb
Adaptive histograms: http://nbviewer.jupyter.org/github/janpipek/physt/blob/dev/doc/adaptive_histogram.ipynb
Use dask for large (not "big") data - alpha: http://nbviewer.jupyter.org/github/janpipek/physt/blob/dev/doc/dask.ipynb
Geographical bins . alpha: http://nbviewer.jupyter.org/github/janpipek/physt/blob/dev/doc/geospatial.ipynb
Plotting with vega backend: http://nbviewer.jupyter.org/github/janpipek/physt/blob/dev/doc/vega-examples.ipynb
...and others, see the doc directory.
Installation
Using pip:
pip install physt
or conda:
conda install -c janpipek physt
Features
Implemented
1D histograms
2D histograms
ND histograms
Some special histograms
2D polar coordinates (with plotting)
3D spherical / cylindrical coordinates (beta)
Adaptive rebinning for on-line filling of unknown data (beta)
Non-consecutive bins
Memory-effective histogramming of dask arrays (beta)
Understands any numpy-array-like object
Keep underflow / overflow / missed bins
Basic numeric operations (* / + -)
Items / slice selection (including mask arrays)
Add new values (fill, fill_n)
Cumulative values, densities
Simple statistics for original data (mean, std, sem) - only for 1D histograms
Plotting with several backends
matplotlib (static plots with many options)
vega (interactive plots, beta, help wanted!)
folium (experimental for geo-data)
plotly (very basic, help wanted!)
ascii (experimental)
Algorithms for optimized binning
pretty (nice rounded bin edges)
mathematical (statistical, quantile-based, geometrical, ...)
IO, conversions
I/O JSON
I/O xarray.DataSet (experimental)
O ROOT file (experimental)
O pandas.DataFrame (basic)
Planned
Rebinning
using reference to original data?
merging bins
Statistics (based on original data)?
Stacked histograms (with names)
Potentially holoviews plotting backend (instead of the discontinued bokeh one)
Not planned
Kernel density estimates - use your favourite statistics package (like seaborn)
Rebinning using interpolation - it should be trivial to use rebin (https://github.com/jhykes/rebin) with physt
Rationale (for both): physt is dumb, but precise.
Dependencies
Python 3.8+
Numpy 1.20+
(optional) polars (0.20, 1.0), pandas, dask, xarray - if you want to histogram those
(optional) matplotlib - simple output
(optional) xarray - I/O
(optional) uproot - I/O
(optional) astropy - additional binning algorithms
(optional) folium - map plotting
(optional) vega3 - for vega in-line in IPython notebook (note that to generate vega JSON, this is not necessary)
(optional) xtermcolor - for ASCII color maps
(testing) pytest
(docs) sphinx, sphinx_rtd_theme, ipython
Publicity
Talk at PyData Berlin 2018:
https://janpipek.github.io/pydata2018-berlin/ - repository with slides and links
https://www.youtube.com/watch?v=ZG-wH3-Up9Y - video of the talk
Contribution
I am looking for anyone interested in using / developing physt. You can contribute by reporting errors, implementing missing features and suggest new one.
Thanks to:
Ryan Mackenzie White - https://github.com/ryanmackenziewhite for the protobuf idea and first implementation
Patches:
Matthieu Marinangeli - https://github.com/marinang
Alternatives and inspirations
https://github.com/boostorg/histogram (C++, part of boost)
https://github.com/scikit-hep/boost-histogram (Python wrapper around boost-histogram)
https://github.com/ibab/matplotlib-hep
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.