plainchart 0.2.1

Last updated:

0 purchases

plainchart 0.2.1 Image
plainchart 0.2.1 Images
Add to Cart

Description:

plainchart 0.2.1

PlainChart
A simple plain-text, no-dependencies, pip-installable, open-source charting utility in Python.
Usage:
>>> import plainchart
>>> chart = plainchart.PlainChart([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9]) # 🥧
>>> print(chart.render())

▌ ▌
▌ ▌
▌ ▌
▌ ▌ ▌
▌▌ ▌▌ ▌▌
▌▌ ▌▌ ▌▌
▌ ▌▌ ▌▌ ▌▌
▌ ▌ ▌▌ ▌▌▌▌▌
▌ ▌ ▌▌▌▌▌▌▌▌
▌▌▌▌▌▌▌▌▌▌▌▌

Installation
To install PlainChart, you can use pipenv or pip:
$ pipenv install plainchart

Features
With PlainChart, you can:

render an array of values in a plain text chart
limit the height of the chart and have the values rendered accordingly
render a different style of chart, e.g., plainchart.PlainChart.bar or plainchart.PlainChart.scatter
implement your own style of chart, e.g., mean_html (see example below)

Examples
>>> import plainchart
>>> import random
>>>
>>> values = [random.randint(0, 10) for _ in range(100)]
>>> chart = plainchart.PlainChart(values)
>>>
>>> print(chart.render())

▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌
▌ ▌ ▌ ▌▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌
▌ ▌ ▌▌ ▌▌ ▌ ▌ ▌▌ ▌ ▌ ▌▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌
▌ ▌ ▌▌ ▌▌ ▌▌▌ ▌ ▌▌ ▌▌▌ ▌ ▌ ▌ ▌▌ ▌ ▌▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌
▌ ▌ ▌▌▌ ▌▌ ▌▌▌ ▌▌ ▌▌ ▌▌▌▌ ▌ ▌ ▌ ▌ ▌ ▌▌ ▌ ▌▌ ▌ ▌ ▌ ▌ ▌▌▌ ▌ ▌ ▌ ▌
▌ ▌ ▌▌▌ ▌▌ ▌▌▌ ▌▌ ▌▌ ▌▌▌▌ ▌▌ ▌ ▌ ▌ ▌ ▌ ▌▌ ▌ ▌▌ ▌ ▌▌ ▌ ▌▌▌▌▌▌▌ ▌▌▌ ▌ ▌
▌ ▌ ▌▌▌ ▌▌ ▌▌▌ ▌▌ ▌▌▌▌▌▌▌▌▌ ▌▌▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌ ▌▌ ▌ ▌▌ ▌ ▌▌ ▌ ▌▌▌▌▌▌▌ ▌▌▌ ▌▌ ▌▌
▌ ▌ ▌▌▌▌ ▌▌▌ ▌▌▌▌ ▌▌▌▌▌▌▌▌▌▌▌▌ ▌▌▌ ▌ ▌ ▌ ▌ ▌▌▌ ▌ ▌ ▌▌ ▌▌▌ ▌ ▌▌▌ ▌ ▌▌ ▌▌▌▌▌▌▌▌▌ ▌▌▌ ▌▌ ▌ ▌▌
▌▌▌▌ ▌▌▌▌ ▌▌▌ ▌▌▌▌ ▌▌▌▌▌▌▌▌▌▌▌▌ ▌▌▌ ▌▌ ▌ ▌ ▌▌▌▌▌▌▌ ▌▌▌▌▌▌▌▌ ▌▌ ▌▌▌▌▌ ▌▌▌▌ ▌▌▌▌▌▌▌▌▌ ▌▌▌ ▌▌▌ ▌▌▌▌
▌▌▌▌▌ ▌▌▌▌ ▌▌▌▌▌▌▌▌ ▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌ ▌▌ ▌ ▌▌ ▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌▌ ▌▌▌▌▌▌▌▌▌▌▌▌▌▌ ▌▌▌▌▌▌▌▌▌▌▌▌▌

>>> import plainchart
>>> import math
>>> import numpy as np
>>>
>>> values = [1.3 + math.sin(x) for x in np.linspace(0, 4 * math.pi, num=100)]
>>> chart = plainchart.PlainChart(values, style=plainchart.PlainChart.scatter)
>>>
>>> print(chart.render())

×××××××× ×××××××
××× ××× ××× ×××
×× ×× ××× ××
×× ×× × ××
×× ×× ×× ×× ×
× ×× ×× ××
×× ×× ×× ××
××× ×× ×× ××
××× ×××× ×××× ××××
××××× ××××

You can also implement your own style of chart. Below is an example of a HTML chart (mean_html.py) with different colors for values below and above the mean.
import plainchart
import random
import statistics

def mean_html(chart, value, y):
mean = statistics.mean(chart.values)
mean_y = chart.y(mean)
value_y = chart.y(value)

if value_y <= mean_y:

if y <= value_y:
return '<span style="color:green">▌</span>'

return '<span style="color:white">▌</span>'

else:

if y <= mean_y:
return '<span style="color:green">▌</span>'

elif y <= value_y:
return '<span style="color:red">▌</span>'

return '<span style="color:white">▌</span>'

values = [random.randint(0, 10) for _ in range(100)]
chart = plainchart.PlainChart(values, style=mean_html)

print(chart.render(new_line='<br>'))

$ python mean_html.py > mean.html


Contribute
Please feel free to open an issue to propose a new feature or point out a bug. You can also fork the PlainChart repository and submit a pull request.
Support
PlainChart is free and under the MIT License. To support its development, you can make a donation to cash.me/$gduverger.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.