priceindices 1.4.0

Last updated:

0 purchases

priceindices 1.4.0 Image
priceindices 1.4.0 Images
Add to Cart

Description:

priceindices 1.4.0

Development Environment
Poetry

Install Poetry
curl -sSL https://install.python-poetry.org | python3 -


Install dependencies
poetry install


To add new dependencies use poetry add
poetry add dependency_name


Read Poetry documentation for more.

Installation
pip
pip install PriceIndics

Poetry
poetry add PriceIndices


From Source (Github)
git clone https://github.com/dc-aichara/Price-Indices.git
cd Price-Indices
python3 setup.py install
Usages
from PriceIndices import MarketHistory, Indices

Examples


Get market history and closing price


>>> history = MarketHistory()

# Get Market History

>>> df_history = history.get_history("bitcoin", "2020-03-16", "2021-03-15")
>>> df_history.head()
open high low close volume market_cap date
0 59267.429049 60540.992712 55393.165363 55907.200226 6.641937e+10 1.042946e+12 2021-03-15
1 61221.134297 61597.918396 59302.316977 59302.316977 4.390123e+10 1.106226e+12 2021-03-14
2 57343.370247 61683.864014 56217.972382 61243.084766 6.066983e+10 1.142369e+12 2021-03-13
3 57821.218747 57996.619490 55376.650088 57332.088964 5.568994e+10 1.069366e+12 2021-03-12
4 55963.180089 58091.062703 54484.593089 57805.123019 5.677234e+10 1.078136e+12 2021-03-11

# Get closing price

>>> price_data = history.get_price("bitcoin", "2020-03-16", "2021-03-15")

>>> price_data.head()
date price
0 2021-03-15 55907.200226
1 2021-03-14 59302.316977
2 2021-03-13 61243.084766
3 2021-03-12 57332.088964
4 2021-03-11 57805.123019



Calculate Volatility Index


indices = Indices(df=price_data, plot_dir="plots")
>>> df_bvol = indices.get_vola_index(
plot=True,
plot_name="vola_index.png",
show_plot=False
)
>>> df_bvol.head()
date price BVOL_Index
0 2019-10-29 9427.69 0.711107
1 2019-10-28 9256.15 0.707269
2 2019-10-27 9551.71 0.709765
3 2019-10-26 9244.97 0.698544
4 2019-10-25 8660.70 0.692656



Plot Volatility Index


Plot will be saved in plots directory as vola_index.png.



Calculate Relative Strength Index (RSI)


>>> df_rsi = indices.get_rsi(
plot=True,
plot_name="rsi.png",
show_plot=False,
)

>>> print(df_rsi.head())
date price RSI_1 RS_Smooth RSI_2
0 2019-10-30 9205.73 64.641855 1.624958 61.904151
1 2019-10-29 9427.69 65.707097 1.709072 63.086984
2 2019-10-28 9256.15 61.333433 1.597755 61.505224
3 2019-10-27 9551.71 66.873327 2.012345 66.803267
4 2019-10-26 9244.97 63.535368 1.791208 64.173219



Plot RSI


Plot will be saved in plots directory as rsi.png.



Get Bollinger Bands and its plot


>>> df_bb = indices.get_bollinger_bands(
days=20,
plot=True,
plot_name="bollinger_bands.png",
show_plot=False,
)
>>> df_bb.head()
date price BB_upper BB_lower
0 2019-10-30 9205.73 9635.043581 -8428.5855
1 2019-10-29 9427.69 9550.707153 -8397.6225
2 2019-10-28 9256.15 9408.263164 -8356.0250
3 2019-10-27 9551.71 9268.466516 -8304.6565
4 2019-10-26 9244.97 9003.752779 -8239.3520


"""
This will also save Bollingers bands plot in your working directory as 'bollinger_bands.png' in plots folder.
"""




Get Moving Average Convergence Divergence (MACD) and its plot


>>> df_macd = indices.get_moving_average_convergence_divergence(
plot=True,
plot_name="macd.png",
show_plot=False,
)
"""
This will return a pandas DataFrame and save EMA plot as 'macd.png' in in plots folder.
""""
>>> df_macd.head()
date price MACD
0 2019-10-30 9205.73 0.000000
1 2019-10-29 9427.69 17.706211
2 2019-10-28 9256.15 17.692715
3 2019-10-27 9551.71 41.057952
4 2019-10-26 9244.97 34.426864




Get Simple Moving Average (SMA) and its plot


>>> df_sma = indices.get_simple_moving_average(
days=20,
plot=True,
plot_name="sma.png",
show_plot=False,
)
"""This will return a pandas DataFrame and save EMA plot as 'sma.png' in plots folder.
""""
>>> df_sma.head()
date price SMA
0 2019-10-30 9205.73 8467.488000
1 2019-10-29 9427.69 8400.797333
2 2019-10-28 9256.15 8330.597333
3 2019-10-27 9551.71 8268.254667
4 2019-10-26 9244.97 8187.244667




Get Exponential Moving Average (EMA) and its plot


>>> df_ema = indices.get_exponential_moving_average(
periods=(20,70),
plot=True,
plot_name="ema.png",
show_plot=False,
)
"""This will return a pandas DataFrame and save EMA plot as 'ema.png' in plots folder.
""""

>>> df_ema.head()
date price EMA_20 EMA_70
0 2019-10-30 9205.73 9205.730000 9205.730000
1 2019-10-29 9427.69 9226.869048 9211.982394
2 2019-10-28 9256.15 9229.657710 9213.226552
3 2019-10-27 9551.71 9260.329356 9222.761297
4 2019-10-26 9244.97 9258.866561 9223.386895
>>>


License
MIT © Dayal Chand Aichara
Check out webpage of PriceIndices package.
I have created a cryptocurrency technical indicators dashboard which uses this library.
Disclaimer:
All content provided here, is for educational purpose and your general information only, procured from third party sources.
I make no warranties of any kind in relation to this content, including but not limited to accuracy
and updatedness. No part of the content that I provide constitutes financial advice, legal advice
or any other form of advice meant for your specific reliance for any purpose. Any use or reliance on
my content is solely at your own risk and discretion. You should conduct your own research, review,
analyse and verify my content before relying on them. Trading is a highly risky activity that can
lead to major losses, please therefore consult your financial advisor before making any decision.
No content on this Site is meant to be a solicitation or offer.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.