programmingForData 0.2.0

Last updated:

0 purchases

programmingForData 0.2.0 Image
programmingForData 0.2.0 Images
Add to Cart

Description:

programmingForData 0.2.0

Data Preprocessing Library
A comprehensive library for data preprocessing tasks, including data cleaning, transformation, and visualization.
Installation
To install the updated library, use pip:
pip install programmingForData==0.2.0
Usage
Outlier Handling
import pandas as pd
from programmingForData.OutlierHandler import OutlierHandler

data = pd.DataFrame({'A': [1, 2, 3, 4, 100]})
outlier_handler = OutlierHandler()

# Remove outliers using IQR method
cleaned_data = outlier_handler.iqr_outliers(data, 'A')
print(cleaned_data)

# Replace outliers with median
data = outlier_handler.replace_outliers_with_median(data, 'A')
print(data)

Scaling
import pandas as pd
from programmingForData.Scaler import Scaler

data = pd.DataFrame({'A': [1, 2, 3, 4, 5]})
scaler = Scaler()

# Min-Max scaling
scaled_data = scaler.min_max_scale(data)
print(scaled_data)

# Standard scaling
standard_scaled_data = scaler.standard_scale(data)
print(standard_scaled_data)

Handling Missing Values
import pandas as pd
from programmingForData.MissingValueHandler import MissingValueHandler

data = pd.DataFrame({'A': [1, 2, None, 4, 5]})
missing_value_handler = MissingValueHandler()

# Fill missing values with mean
data = missing_value_handler.fill_mean(data, ['A'])
print(data)

# Drop rows with missing values
data = missing_value_handler.drop_missing(data)
print(data)

Visualization
import pandas as pd
from programmingForData.Visualizer import Visualizer

data = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [5, 4, 3, 2, 1]})
visualizer = Visualizer()

# Plot histogram
visualizer.plot_histogram(data, 'A')

# Plot boxplot
visualizer.plot_boxplot(data, 'A')

# Plot scatter plot
visualizer.plot_scatter(data, 'A', 'B')

# Plot correlation matrix
visualizer.plot_correlation_matrix(data)

Filtering Data
import pandas as pd
from programmingForData.DataFilter import DataFilter

data = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [5, 4, 3, 2, 1]})
data_filter = DataFilter()

# Filter data by condition
filtered_data = data_filter.filter_by_condition(data, 'A > 2')
print(filtered_data)

# Filter specific columns
filtered_columns = data_filter.filter_by_columns(data, ['A'])
print(filtered_columns)

Encoding Categorical Data
import pandas as pd
from programmingForData.CategoricalEncoder import CategoricalEncoder

data = pd.DataFrame({'Category': ['A', 'B', 'A', 'C']})
encoder = CategoricalEncoder()

# One-hot encoding
one_hot_encoded_data = encoder.one_hot_encode(data, 'Category')
print(one_hot_encoded_data)

# Label encoding
label_encoded_data = encoder.label_encode(data, 'Category')
print(label_encoded_data)

Budget Categorization
import pandas as pd
from programmingForData.BudgetHandler import BudgetHandler

data = pd.DataFrame({'Budget': [500000, 20000000, 300000000]})
budget_handler = BudgetHandler()

# Categorize budget
categorized_data = budget_handler.categorize_budget(data, 'Budget')
print(categorized_data)

Data Type Conversion
import pandas as pd
from programmingForData.DataTypeConverter import DataTypeConverter

data = pd.DataFrame({'A': ['1', '2', '3'], 'B': [1, 2, 3]})
converter = DataTypeConverter()

# Convert to numeric
numeric_data = converter.convert_to_numeric(data, ['A'])
print(numeric_data)

# Convert to categorical
categorical_data = converter.convert_to_categorical(data, ['B'])
print(categorical_data)

Date and Time Handling
import pandas as pd
from programmingForData.DateTimeHandler import DateTimeHandler

data = pd.DataFrame({'Date': ['01/01/2020', '02/01/2020', '03/01/2020']})
date_time_handler = DateTimeHandler()

# Convert to datetime
datetime_data = date_time_handler.convert_to_datetime(data, 'Date')
print(datetime_data)

# Extract date parts
date_parts = date_time_handler.extract_date_parts(datetime_data, 'Date')
print(date_parts)

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.