py-hyperpy 0.0.5

Creator: railscoder56

Last updated:

0 purchases

py-hyperpy 0.0.5 Image
py-hyperpy 0.0.5 Images
Add to Cart

Description:

pyhyperpy 0.0.5

hyperpy
HyperPy: An automatic hyperparameter optimization framework


Description

HyperPy: Library for automatic hyperparameter optimization. Build on top of Optuna to perform hyperparameter optimization with low code.
This library corresponds to part of the work of Sergio A. Mora Pardo
👶 Our current version:
Installation

You can install hyperpy with pip:
# pip install py-hyperpy

Example
Import the library:
import hyperpy as hy
from hyperpy import ExampleConfig # Just for example

Reading data:
data=ExampleConfig()
train, test, sub = data.readData()

Extract features:
feat_X = train.filter(['Pclass','Age', 'SibSp', 'Parch','Fare']).values
Y = train.Survived.values

Run the optimization:
running=hy.run(feat_X, Y)
study = running.buildStudy()

See the results:
print("best params: ", study.best_params)
print("best test accuracy: ", study.best_value)
best_params, best_value = hy.results.results(study)

NOTE
The function hy.run() return a Study object. And only needs: Features, target. In the example: best test accuracy = 0.7407407164573669
Documentation
Documentation is available at hyperpy
Working on tutorial, meanwhile explore documentation.
Development
Source code is available at hyperpy
Contact

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.