pyblaze 2.3.2

Last updated:

0 purchases

pyblaze 2.3.2 Image
pyblaze 2.3.2 Images
Add to Cart

Description:

pyblaze 2.3.2

PyBlaze


PyBlaze is an unobtrusive, high-level library for large-scale machine and deep learning in
PyTorch. It is engineered to cut obsolete boilerplate code while preserving
the flexibility of PyTorch to create just about any deep learning model.
Quickstart
Plenty of tutorials are available in the official documentation.
The most basic tutorial builds a
classifier for CIFAR10.
Installation
PyBlaze is available on PyPi and can simply be installed as follows:
pip install pyblaze

Library Design
PyBlaze revolves around the concept of an engine. An engine is a powerful abstraction for
combining a model's definition with the algorithm required to optimize its parameters according to
some data. Engines provided by PyBlaze are focused on generalization: while the engine encapsulates
the optimization algorithm, the user must explicitly define the optimization objective (usually the
loss function).
However, engines go far beyond implementing the optimization algorithm. Specifically, they further
provide the following features:


Evaluation: During training, validation data can be used to evaluate the generalization
performance of the trained model every so often. Also, arbitrary metrics may be computed.


Callbacks: During training and model evaluation, callbacks serve as hooks called at specific
events in the process. This makes it possible to easily use some tracking framework, perform
early stopping, or dynamically adjust parameters over the course of the training. Custom
callbacks can easily be created.


GPU Support: Training and model evaluation is automatically performed on all available GPUs.
The same code that works for the CPU works for the GPU ... and also for multiple GPUs.


Available Engines
Engines are currently implemented for the following training procedures:


pyblaze.nn.MLEEngine: This is the most central engine as it enables supervised as well as
unsupervised learning. It can therefore adapt to multiple different problems: classification,
regression, (variational) autoencoders, ..., depending on the loss only. In order to simplify
initialization (as configuration requires toggling some settings), there exist some specialized
MLE engines. Currently, the only one is pyblaze.nn.AutoencoderEngine.


pyblaze.nn.WGANEngine: This engine is specifically designed for training Wasserstein GANs.
This class is required due to the independent training of generator and critic.


Implementing your custom engine is rarely necessary for most common problems. However, when working
on highly customized machine learning models, it might be a good idea. Usually, it is sufficient to
implement the train_batch and eval_batch methods to specify how to perform training and
evaluation, respectively, for a single batch of data. Consult the documentation of
pyblaze.nn.Engine to read about all methods available for override.
License
PyBlaze is licensed under the MIT License.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.