pybliometrics 4.1

Last updated:

0 purchases

pybliometrics 4.1 Image
pybliometrics 4.1 Images
Add to Cart

Description:

pybliometrics 4.1

pybliometrics
Enables large-scale access to Elsevier’s Scopus API from Python.
Documentation: https://pybliometrics.readthedocs.io
Development: https://github.com/pybliometrics-dev/pybliometrics








Example
>>> import pybliometrics
>>> pybliometrics.scopus.init() # read API keys
>>> # Document-specific information
>>> from pybliometrics.scopus import AbstractRetrieval
>>> ab = AbstractRetrieval("10.1016/j.softx.2019.100263")
>>> ab.title
'pybliometrics: Scriptable bibliometrics using a Python interface to Scopus'
>>> ab.publicationName
'SoftwareX'
>>> ab.authors
[Author(auid=57209617104, indexed_name='Rose M.E.', surname='Rose',
given_name='Michael E.', affiliation='60105007'),
Author(auid=7004212771, indexed_name='Kitchin J.R.', surname='Kitchin',
given_name='John R.', affiliation='60027950')]
>>>
>>> # Author-specific information
>>> from pybliometrics.scopus import AuthorRetrieval
>>> au2 = AuthorRetrieval(ab.authors[1].auid)
>>> au2.h_index
34
>>> au1 = AuthorRetrieval(ab.authors[0].auid)
>>> au1.affiliation_current
[Affiliation(id=60105007, parent=None, type='parent', relationship='author',
afdispname=None, preferred_name='Max Planck Institute for Innovation and Competition',
parent_preferred_name=None, country_code='deu', country='Germany',
address_part='Marstallplatz 1', city='Munich', state='Bayern',
postal_code='80539', org_domain='ip.mpg.de', org_URL='http://www.ip.mpg.de/')]
>>>
>>> # Affiliation information
>>> from pybliometrics.scopus import AffiliationRetrieval
>>> aff1 = AffiliationRetrieval(au1.affiliation_current[0].id)
>>> aff1.author_count
98


Installation
Install the stable version from PyPI:
pip install pybliometrics
or the development version from the GitHub repository (requires git on your system):
pip install git+https://github.com/pybliometrics-dev/pybliometrics


Citation
If pybliometrics helped you getting data for research, please cite our corresponding paper:

Rose, Michael E. and John R. Kitchin: “pybliometrics: Scriptable bibliometrics using a Python interface to Scopus”, SoftwareX 10 (2019) 100263.

Citing the paper helps the development of pybliometrics, because it justifies funneling resources into the development. It also signals that you obtained data from Scopus in a transparent and replicable way.


Change log
Please see CHANGES.rst.


Contributing
Please see CONTRIBUTING.rst. For a list of contributors see
AUTHORS.rst.


License
MIT License; see LICENSE.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.