pycdfpp 0.7.3

Last updated:

0 purchases

pycdfpp 0.7.3 Image
pycdfpp 0.7.3 Images
Add to Cart

Description:

pycdfpp 0.7.3

Python packages



Linux x86_64
Windows x86_64
MacOs x86_64
MacOs ARM64











Unit Tests



Linux x86_64
Windows x86_64
MacOs x86_64










CDFpp (CDF++)
A NASA's CDF modern C++ library.
This is not a C++ wrapper but a full C++ implementation.
Why? CDF files are still used for space physics missions but few implementations are available.
The main one is NASA's C implementation available here but it lacks multi-threads support (global shared state), has an old C interface and has a license which isn't compatible with most Linux distributions policy.
There are also Java and Python implementations which are not usable in C++.
List of features and roadmap:

CDF reading

read files from cdf version 2.2 to 3.x
read uncompressed file headers
read uncompressed attributes
read uncompressed variables
read variable attributes
loads cdf files from memory (std::vector or char*)
handles both row and column major files
read variables with nested VXRs
read compressed files (GZip, RLE)
read compressed variables (GZip, RLE)
read UTF-8 encoded files
read ISO 8859-1(Latin-1) encoded files (converts to UTF-8 on the fly)
variables values lazy loading
decode DEC's floating point encoding (Itanium, ALPHA and VAX)
pad values


CDF writing

write uncompressed headers
write uncompressed attributes
write uncompressed variables
write compressed variables
write compressed files
pad values


General features

uses libdeflate for faster GZip decompression
highly optimized CDF reads (up to ~4GB/s read speed from disk)
handle leap seconds
Python wrappers
Documentation
Examples (see below)
Benchmarks



If you want to understand how it works, how to use the code or what works, you may have to read tests.
Installing
From PyPi
python3 -m pip install --user pycdfpp

From sources
meson build
cd build
ninja
sudo ninja install

Or if youl want to build a Python wheel:
python -m build .
# resulting wheel will be located into dist folder

Basic usage
Python
Reading CDF files
Basic example from a local file:
import pycdfpp
cdf = pycdfpp.load("some_cdf.cdf")
cdf_var_data = cdf["var_name"].values #builds a numpy view or a list of strings
attribute_name_first_value = cdf.attributes['attribute_name'][0]

Note that you can also load in memory files:
import pycdfpp
import requests
import matplotlib.pyplot as plt
tha_l2_fgm = pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)
plt.plot(tha_l2_fgm["tha_fgl_gsm"])
plt.show()

Buffer protocol support:
import pycdfpp
import requests
import xarray as xr
import matplotlib.pyplot as plt

tha_l2_fgm = pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)
xr.DataArray(tha_l2_fgm['tha_fgl_gsm'], dims=['time', 'components'], coords={'time':tha_l2_fgm['tha_fgl_time'].values, 'components':['x', 'y', 'z']}).plot.line(x='time')
plt.show()

# Works with matplotlib directly too

plt.plot(tha_l2_fgm['tha_fgl_time'], tha_l2_fgm['tha_fgl_gsm'])
plt.show()

Datetimes handling:
import pycdfpp
import os
# Due to an issue with pybind11 you have to force your timezone to UTC for
# datetime conversion (not necessary for numpy datetime64)
os.environ['TZ']='UTC'

mms2_fgm_srvy = pycdfpp.load("mms2_fgm_srvy_l2_20200201_v5.230.0.cdf")

# to convert any CDF variable holding any time type to python datetime:
epoch_dt = pycdfpp.to_datetime(mms2_fgm_srvy["Epoch"])

# same with numpy datetime64:
epoch_dt64 = pycdfpp.to_datetime64(mms2_fgm_srvy["Epoch"])

# note that using datetime64 is ~100x faster than datetime (~2ns/element on an average laptop)

Writing CDF files
Creating a basic CDF file:
import pycdfpp
import numpy as np
from datetime import datetime

cdf = pycdfpp.CDF()
cdf.add_attribute("some attribute", [[1,2,3], [datetime(2018,1,1), datetime(2018,1,2)], "hello\nworld"])
cdf.add_variable(f"some variable", values=np.ones((10),dtype=np.float64))
pycdfpp.save(cdf, "some_cdf.cdf")

C++
#include "cdf-io/cdf-io.hpp"
#include <iostream>

std::ostream& operator<<(std::ostream& os, const cdf::Variable::shape_t& shape)
{
os << "(";
for (auto i = 0; i < static_cast<int>(std::size(shape)) - 1; i++)
os << shape[i] << ',';
if (std::size(shape) >= 1)
os << shape[std::size(shape) - 1];
os << ")";
return os;
}

int main(int argc, char** argv)
{
auto path = std::string(DATA_PATH) + "/a_cdf.cdf";
// cdf::io::load returns a optional<CDF>
if (const auto my_cdf = cdf::io::load(path); my_cdf)
{
std::cout << "Attribute list:" << std::endl;
for (const auto& [name, attribute] : my_cdf->attributes)
{
std::cout << "\t" << name << std::endl;
}
std::cout << "Variable list:" << std::endl;
for (const auto& [name, variable] : my_cdf->variables)
{
std::cout << "\t" << name << " shape:" << variable.shape() << std::endl;
}
return 0;
}
return -1;
}

caveats

NRV variables shape, in order to expose a consistent shape, PyCDFpp exposes the reccord count as first dimension and thus its value will be either 0 or 1 (0 mean empty variable).

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.