Last updated:
0 purchases
pycerializer 0.5.7
Lightweight serialization module for Python.
PyCerializer is a lightweight serialization module for Python.
The aim of PyCerializer is to produce serialized data that
can be easily read in other programming languages such
as C/C++ and others.
Requirements
There are no external dependencies.
The package is based on standard python module struct
that is available in all supported python versions, but
the PyCerializer use also typing module that was introduced
in Python 3.5.
Supported types:
Numbers
[u]int64_t
[u]int32_t
[u]int16_t
[u]int8_t
Strings
Structures
Endianess:
little,
big.
Installation
pip install pycerializer
Examples
Serialize the Python list and save to file:
original = (1, 123, 4321)
packed = pack_list_num(original, 'int16_t', 'little')
with open('file.bin', 'wb') as f:
f.write(packed)
Deserialize the list using Python:
with open('file.bin', 'rb') as f:
packed = f.read()
unpacked = unpack_list_num(*packed, 'int16_t', 'little')
Deserialize the list using C/C++:
FILE *f = fopen("file.bin", "rb");
const int n = 3;
int16_t buff[n];
fread(buff, sizeof(int16_t), n, f);
for (int i = 0; i < n; i++) printf("%d ", buff[i] );
Serialize and deserialize the list of dictionaries:
# data
data = [{
'name': b'John',
'age': 34,
'height': 177,
'surname': b'Smith',
'weight': 86
},
{
'name': b'Andrew',
'age': 43,
'height': 187,
'surname': b'Bluebaum',
'weight': 67
}, {
'name': b'Michael',
'age': 38,
'height': 189,
'surname': b'Brown',
'weight': 99
}]
# data field:type mapping
data_map = {
'name': 'string',
'age': 'int8_t',
'height': 'int32_t',
'surname': 'string',
'weight': 'int8_t'
}
# packing
data_bytes, data_elements, _, data_elements_size = pack_list_dict(data, data_map)
# unpacking
data_unpacked = unpack_list_dict(data_bytes, data_map, data_elements)
# metadata
meta = {
'number_of_elements': data_elements,
}
# metadata field:type mapping
meta_map = {
'number_of_elements': 'uint64_t'
}
meta_bytes, _ = pack_dict(meta, meta_map)
elements_size_bytes, _ = pack_list_num(data_elements_size, 'int64_t')
# write bytes to a file
with open('list_of_dicts.bin', 'wb') as f:
f.write(meta_bytes)
f.write(elements_size_bytes)
f.write(data_bytes)
# Get the C struct to use it later in C code
print(get_c_struct(meta_map, name='meta_t'))
print(get_c_struct(data_map, name='data_t'))
Deserialize and print the data from file using C/C++:
// Copied from Python output
typedef struct _meta_t {
uint64_t number_of_elements;
} meta_t;
typedef struct _data_t {
char * name;
int8_t age;
int32_t height;
char * surname;
int8_t weight;
} data_t;
// Read the data from buffer
size_t data_t_read(data_t *obj, uint8_t *bytes) {
int64_t *name_size = (int64_t *)bytes; bytes += sizeof(int64_t);
obj->name = (char*)calloc(*name_size + 1, sizeof(char));
memcpy(obj->name, bytes, *name_size); bytes += *name_size;
memcpy(&(obj->age), bytes, sizeof(uint8_t)); bytes += sizeof(uint8_t);
memcpy(&(obj->height), bytes, sizeof(uint32_t)); bytes += sizeof(uint32_t);
int64_t *surname_size = (int64_t *)bytes; bytes += sizeof(int64_t);
obj->surname = calloc(*surname_size + 1, sizeof(char));
memcpy(obj->surname, bytes, *surname_size); bytes += *surname_size;
memcpy(&(obj->weight), bytes, sizeof(int8_t)); bytes += sizeof(int8_t);
return 0;
}
// Never forget to deallocate the memory
void data_t_free(data_t obj) {
free(obj.name);
free(obj.surname);
}
int main() {
FILE *f = fopen("list_of_dicts.bin", "rb");
meta_t meta;
fread(&meta, sizeof(meta_t), 1, f);
data_t *data = (data_t*)malloc(sizeof(data_t) * meta.number_of_elements);
int64_t* sizes = (int64_t*)malloc(meta.number_of_elements * sizeof(int64_t*));
fread(sizes, meta.number_of_elements, sizeof(int64_t), f);
printf("Number of elements: %lu\n", meta.number_of_elements);
for (uint64_t i = 0; i < meta.number_of_elements; i++) {
uint8_t *buff = (uint8_t*)malloc(sizes[i]);
fread(buff, sizes[i], 1, f);
data_t_read(data + i, buff);
printf("%lu. %s %s, age: %d, height: %d, weight: %d\n", i, data[i].name, data[i].surname, data[i].age, data[i].height, data[i].weight);
data_t_free(data[i]);
free(buff);
}
fclose(f);
free(sizes);
free(data);
return 0;
}
Limitation
This module works well for flat data, and definitely, there is much more effort needed to store and read data than using, for example, pickle.
On the other hand, it may take much more effort to read pickled data in C++.
Pycerializer was written ad-hoc for another project and was used for prototyping in Python, where there was a need to read the output in C++, which is the case where this module works quite well.
The number of supported types is very limited but can be easily extended.
Any contribution is welcome.
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.