pydantic_numpy 6.0.0

Last updated:

0 purchases

pydantic_numpy 6.0.0 Image
pydantic_numpy 6.0.0 Images
Add to Cart

Description:

pydantic numpy 6.0.0

pydantic-numpy





Usage
Package that integrates NumPy Arrays into Pydantic!

pydantic_numpy.typing provides many typings such as NpNDArrayFp64, Np3DArrayFp64 (float64 that must be 3D)! Works with both pydantic.BaseModel and pydantic.dataclass
NumpyModel (derived from pydantic.BaseModel) make it possible to dump and load np.ndarray within model fields alongside other fields that are not instances of np.ndarray!

See the test.helper.testing_groups to see types that are defined explicitly.
Examples
For more examples see test_ndarray.py
import numpy as np
from pydantic import BaseModel

import pydantic_numpy.typing as pnd
from pydantic_numpy import np_array_pydantic_annotated_typing
from pydantic_numpy.model import NumpyModel, MultiArrayNumpyFile


class MyBaseModelDerivedModel(BaseModel):
any_array_dtype_and_dimension: pnd.NpNDArray

# Must be numpy float32 as dtype
k: np_array_pydantic_annotated_typing(data_type=np.float32)
shorthand_for_k: pnd.NpNDArrayFp32

must_be_1d_np_array: np_array_pydantic_annotated_typing(dimensions=1)


class MyDemoNumpyModel(NumpyModel):
k: np_array_pydantic_annotated_typing(data_type=np.float32)


# Instantiate from array
cfg = MyDemoModel(k=[1, 2])
# Instantiate from numpy file
cfg = MyDemoModel(k="path_to/array.npy")
# Instantiate from npz file with key
cfg = MyDemoModel(k=MultiArrayNumpyFile(path="path_to/array.npz", key="k"))

cfg.k # np.ndarray[np.float32]

cfg.dump("path_to_dump_dir", "object_id")
cfg.load("path_to_dump_dir", "object_id")

NumpyModel.load requires the original model:
MyNumpyModel.load(<path>)

Use model_agnostic_load when you have several models that may be the correct model:
from pydantic_numpy.model import model_agnostic_load

cfg.dump("path_to_dump_dir", "object_id")
equals_cfg = model_agnostic_load("path_to_dump_dir", "object_id", models=[MyNumpyModel, MyDemoModel])

Custom type
There are two ways to define. Function derived types with pydantic_numpy.helper.annotation.np_array_pydantic_annotated_typing.
Function derived types don't work with static type checkers like Pyright and MyPy. In case you need the support,
just create the types yourself:
NpStrict1DArrayInt64 = Annotated[
np.ndarray[tuple[int], np.dtype[np.int64]],
NpArrayPydanticAnnotation.factory(data_type=np.int64, dimensions=1, strict_data_typing=True),
]

Custom serialization
If the default serialization of NumpyDataDict, as outlined in typing.py, doesn't meet your requirements, you have the option to define a custom type with its own serializer. This can be achieved using the NpArrayPydanticAnnotation.factory method, which accepts a custom serialization function through its serialize_numpy_array_to_json parameter. This parameter expects a function of the form Callable[[npt.ArrayLike], Iterable], allowing you to tailor the serialization process to your specific needs.
Example below illustrates definition of 1d-array of float32 type that serializes to flat Python list (without nested dict as in default NumpyDataDict case):
def _serialize_numpy_array_to_float_list(array_like: npt.ArrayLike) -> Iterable:
return np.array(array_like).astype(float).tolist()


Np1DArrayFp32 = Annotated[
np.ndarray[tuple[int], np.dtype[np.float32]],
NpArrayPydanticAnnotation.factory(
data_type=np.float32,
dimensions=1,
strict_data_typing=False,
serialize_numpy_array_to_json=_serialize_numpy_array_to_float_list,
),
]

Install
pip install pydantic-numpy

History
The original idea originates from this discussion, and forked from cheind's repository.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.