PyDE 1.0.1

Last updated:

0 purchases

PyDE 1.0.1 Image
PyDE 1.0.1 Images
Add to Cart

Description:

PyDE 1.0.1

Global optimization using differential evolution in Python [Storn97].

Installation
git clone https://github.com/hpparvi/PyDE.git
cd PyDE
python setup.py install [--user]


Basic usage
Import the class from the package
from pyde.de import DiffEvol
Create a DiffEvol instance
de = DiffEvol(minfun, bounds, npop)
where minfun is the function to be optimized, bounds is an initialization array,
and npop is the size of the parameter vector population.
Now, you can run the optimizer ngen generations:
res = de.optimize(ngen=100)
or run the optimizer as a generator:
for res in de(ngen=100):
do something


Usage with emcee
The PyDE parameter vector population can be used to initialize the affine-invariant MCMC sampler
emcee when a simple point estimate of the function minimum
(or maximum) is not sufficient:
de = DiffEvol(lnpost, bounds, npop, maximize=True)
de.optimize(ngen)

sampler = emcee.EnsembleSampler(npop, ndim, lnpost)
sampler.run_mcmc(de.population, 1000)


References


[Storn97]
Storn, R., Price, K., Journal of Global Optimization 11: 341–359, 1997




API
pyde.de.DiffEvol (minfun, bounds, npop, F=0.5, C=0.5,
seed=0, maximize=False)
Parameters

minfun:
Function to be minimized.

bounds:
Parameter space bounds as [npar,2] array.

npop:
Size of the parameter vector population.

F:
Difference amplification factor. Values between 0.5-0.8 are good in most cases.

C:
Cross-over probability. Use 0.9 to test for fast convergence, and smaller values (~0.1) for a more elaborate search.

seed:
Random seed.

maximize:
An optional switch telling whether we want maximize or minimize the function. Defaults to minimization.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.