pyerrors 2.12.0

Last updated:

0 purchases

pyerrors 2.12.0 Image
pyerrors 2.12.0 Images
Add to Cart

Description:

pyerrors 2.12.0

pyerrors
pyerrors is a python framework for error computation and propagation of Markov chain Monte Carlo data from lattice field theory and statistical mechanics simulations.

Documentation: https://fjosw.github.io/pyerrors/pyerrors.html
Examples: https://github.com/fjosw/pyerrors/tree/develop/examples
Ask a question: https://github.com/fjosw/pyerrors/discussions/new?category=q-a
Changelog: https://github.com/fjosw/pyerrors/blob/develop/CHANGELOG.md
Bug reports: https://github.com/fjosw/pyerrors/issues

Installation
Install the most recent release using pip and pypi:
python -m pip install pyerrors # Fresh install
python -m pip install -U pyerrors # Update

Install the most recent release using conda and conda-forge:
conda install -c conda-forge pyerrors # Fresh install
conda update -c conda-forge pyerrors # Update

Contributing
We appreciate all contributions to the code, the documentation and the examples. If you want to get involved please have a look at our contribution guideline.
Citing pyerrors
If you use pyerrors for research that leads to a publication we suggest citing the following papers:

Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.