Last updated:
0 purchases
pymialsrtk 2.1.0
Copyright © 2016-2020 Medical Image Analysis Laboratory, University Hospital Center and University of Lausanne (UNIL-CHUV), Switzerland
This software is distributed under the open-source BSD 3-Clause License. See LICENSE file for details.
The Medical Image Analysis Laboratory Super-Resolution ToolKit (MIALSRTK) provides a set of C++ and Python tools necessary to perform motion-robust super-resolution fetal MRI reconstruction.
The original C++ MIALSRTK library includes all algorithms and methods for brain extraction, intensity standardization, motion estimation and super-resolution. It uses the CMake build system and depends on the open-source image processing Insight ToolKit (ITK) library, the command line parser TCLAP library and OpenMP for multi-threading.
MIALSRTK has been recently extended with the pymialsrtk Python3 library following recent advances in standardization of neuroimaging data organization and processing workflows such as the Brain Imaging Data Structure (BIDS) and BIDS App standards. This library has a modular architecture built on top of the Nipype dataflow library which consists of (1) processing nodes that interface with each of the MIALSRTK C++ tools and (2) a processing pipeline that links the interfaces in a common workflow.
The processing pipeline with all dependencies including the C++ MIALSRTK tools are encapsulated in a Docker image container, which handles datasets organized following the BIDS standard and is distributed as a BIDS App @ Docker Hub. For execution on high-performance computing cluster, a Singularity image is also made freely available @ Sylabs Cloud. To facilitate the use of Docker or Singularity, pymialsrtk provides two Python commandline wrappers (mialsuperresolutiontoolkit_docker and mialsuperresolutiontoolkit_singularity) that can generate and run the appropriate command.
All these design considerations allow us not only to (1) represent the entire processing pipeline as an execution graph, where each MIALSRTK C++ tools are connected, but also to (2) provide a mecanism to record data provenance and execution details, and to (3) easily customize the BIDS App to suit specific needs as interfaces with new tools can be added with relatively little effort to account for additional algorithms.
Resources
BIDS App and pymialsrtk documentation: https://mialsrtk.readthedocs.io/
Source: https://github.com/Medical-Image-Analysis-Laboratory/mialsuperresolutiontoolkit
Bug reports: https://github.com/Medical-Image-Analysis-Laboratory/mialsuperresolutiontoolkit/issues
For C++ developers/contributors:
Installation instructions on Ubuntu / Installation instructions on MACOSX
C++ code documentation
Installation
Install Docker or Singularity engine
In a Python 3.7 environment, install pymialsrtk with pip:
pip install pymialsrtk
You are ready to use MIALSRTK BIDS App wrappers!
Usage
mialsuperresolutiontoolkit_docker and mialsuperresolutiontoolkit_singularity python wrappers to the MIALSRTK BIDS App have the following command line arguments:
$ mialsuperresolutiontoolkit_[docker|singularity] -h
usage: mialsuperresolutiontoolkit_[docker|singularity] [-h]
[--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
[--param_file PARAM_FILE]
[--openmp_nb_of_cores OPENMP_NB_OF_CORES]
[--nipype_nb_of_cores NIPYPE_NB_OF_CORES]
[--memory MEMORY]
[--masks_derivatives_dir MASKS_DERIVATIVES_DIR]
[-v]
[--codecarbon_output_dir CODECARBON_OUTPUT_DIR]
bids_dir output_dir {participant}
Argument parser of the MIALSRTK BIDS App Python wrapper
positional arguments:
bids_dir The directory with the input dataset formatted
according to the BIDS standard.
output_dir The directory where the output files should be stored.
If you are running group level analysis this folder
should be prepopulated with the results of the
participant level analysis.
{participant} Level of the analysis that will be performed. Only
participant is available
optional arguments:
-h, --help show this help message and exit
--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]
The label(s) of the participant(s) that should be
analyzed. The label corresponds to
sub-<participant_label> from the BIDS spec (so it does
not include "sub-"). If this parameter is not provided
all subjects should be analyzed. Multiple participants
can be specified with a space separated list.
--param_file PARAM_FILE
Path to a JSON file containing subjects' exams
information and super-resolution total variation
parameters.
--openmp_nb_of_cores OPENMP_NB_OF_CORES
Specify number of cores used by OpenMP threads
Especially useful for NLM denoising and slice-to-
volume registration. (Default: 0, meaning it will be
determined automatically)
--nipype_nb_of_cores NIPYPE_NB_OF_CORES
Specify number of cores used by the Niype workflow
library to distribute the execution of independent
processing workflow nodes (i.e. interfaces)
(Especially useful in the case of slice-by-slice bias
field correction and intensity standardization steps
for example). (Default: 0, meaning it will be
determined automatically)
--memory MEMORY Limit the workflow to using the amount of specified
memory [in gb] (Default: 0, the workflow memory
consumption is not limited)
--masks_derivatives_dir MASKS_DERIVATIVES_DIR
Use manual brain masks found in
``<output_dir>/<masks_derivatives_dir>/`` directory
--codecarbon_output_dir CODECARBON_OUTPUT_DIR
Directory path in which `codecarbon` saves a CSV file
called `emissions.csv` reporting carbon footprint
details of the overall run (Defaults to user’s home
directory)
-v, --version show program's version number and exit
Credits
Sébastien Tourbier🎨 ⚠️ 💻 💡 📖 👀
Priscille de Dumast💡 ⚠️ 💻 📖
hamzake💡 ⚠️ 💻 📖
Hélène Lajous🐛 ⚠️
Patric Hagmann🔣 🔍
Meritxell Bach🔍
This project follows the all-contributors specification. Contributions of any kind welcome!
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.