0 purchases
pyoclk 1.2.3
OpenCL Kernel Python Wrapper
Install
Requirements
OpenCL GPU hardware
numpy
cmake(if compile from source)
Install from wheel
pip install pyoclk
or download wheel from release and install
Compile from source
Clone this repo
clone by http
git clone --recursive https://github.com/jinmingyi1998/opencl_kernels.git
with ssh
git clone --recursive [email protected]:jinmingyi1998/opencl_kernels.git
Install
cd opencl_kernels
python setup.py install
DO NOT move this directory after install
Usage
Kernel File:
a file named add.cl
kernel void add(global float*a, global float*out, int int_arg, float float_arg){
int x = get_global_id(0);
if(x==0){
printf(" accept int arg: %d, accept float arg: %f\n",int_arg,float_arg);
}
out[x] = a[x] * float_arg + int_arg;
}
Python Code
OOP Style
import numpy as np
import oclk
a = np.random.rand(100, 100).reshape([10, -1])
a = np.ascontiguousarray(a, np.float32)
out = np.zeros(a.shape)
out = np.ascontiguousarray(out, np.float32)
runner = oclk.Runner()
runner.load_kernel("add.cl", "add", "")
timer = oclk.TimerArgs(
enable=True,
warmup=10,
repeat=50,
name='add_kernel'
)
runner.run(
kernel_name="add",
input=[
{"name": "a", "value": a, },
{"name": "out", "value": out, },
{"name": "int_arg", "value": 1, "type": "int"},
{"name": "float_arg", "value": 12.34}
],
output=['out'],
local_work_size=[1, 1],
global_work_size=a.shape,
timer=timer
)
# check result
a = a.reshape([-1])
out = out.reshape([-1])
print(a[:8])
print(out[:8])
Kernel Benchmark
write a config like bench_add.yaml
run python -m oclk benchmark -f examples/bench_add.yaml
Example
python -m oclk benchmark -f examples/bench_add.yaml
output:
[Timer bench_add.add] [CNT: 1] [AVG: 0.539ms] [STDEV 0.000ms] [TOTAL 0.539ms]
[Timer bench_add.add_constant] [CNT: 1] [AVG: 0.576ms] [STDEV 0.000ms] [TOTAL 0.576ms]
[Timer bench_add.add_batch] [CNT: 1] [AVG: 0.150ms] [STDEV 0.000ms] [TOTAL 0.150ms]
python -m oclk benchmark -f examples/bench_add.yaml -s table
output:
benchmark results
┏━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┓
┃ timer name ┃ avg time(ms) ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━┩
│ bench_add.add │ 0.538525390625 │
│ bench_add.add_constant │ 0.581396484375 │
│ bench_add.add_batch │ 0.149169921875 │
└────────────────────────┴────────────────┘
python -m oclk benchmark -f examples/bench_add.yaml -s json -o bench_add.json
output to json file bench_add.json
[
{
"name": "bench_add.add",
"time(ms)": 0.54248046875
},
{
"name": "bench_add.add_constant",
"time(ms)": 0.5767089843750001
},
{
"name": "bench_add.add_batch",
"time(ms)": 0.15048828125000002
}
]
Kernel Tune
given a OpenCL kernel file add.cl
run python -m oclk new tune add, then generate a new file tune_add.py
edit tune_add.py
run python -m oclk tune -f tune_add.py -o add_tune_result.json
results are stored in add_tune_result.json
Example
python -m oclk tune -f examples/tune/tune_add.py -k 3
then output output.json
[
{
"name": [
"examples.tune.tune_add",
"AddTuner"
],
"k": 3,
"topk_results": [
{
"kwargs": {
"local_work_size": [
512
],
"vector_size": 4,
"tile_size": 4,
"method": "naive"
},
"time_ms": 0.67691162109375
},
{
"kwargs": {
"local_work_size": [
128
],
"vector_size": 4,
"tile_size": 4,
"method": "naive"
},
"time_ms": 0.6769140625
},
{
"kwargs": {
"local_work_size": [
64
],
"vector_size": 4,
"tile_size": 4,
"method": "naive"
},
"time_ms": 0.677001953125
}
]
}
]
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.