Last updated:
0 purchases
pysfa 0.8
Stochastic Frontier Analysis (SFA)
Installation
The pySFA package is now avaiable on PyPI and the latest development version can be installed from the Github repository pySFA. Please feel free to download and test it. We welcome any bug reports and feedback.
PyPI
pip install pysfa
GitHub
pip install -U git+https://github.com/gEAPA/pySFA
Authors
Sheng Dai, PhD, Turku School of Economics, University of Turku, Finland.
Zhiqiang Liao, Doctoral Researcher, Aalto University School of Business, Finland.
Demo: Estimating a production function by pySFA
import numpy as np
import pandas as pd
from pysfa import SFA
from pysfa.dataset import load_Tim_Coelli_frontier
# import the data from Tim Coelli Frontier 4.1
df = load_Tim_Coelli_frontier(x_select=['labour', 'capital'],
y_select=['output'])
y = np.log(df.y)
x = np.log(df.x)
# Estimate SFA model
res = SFA.SFA(y, x, fun=SFA.FUN_PROD, method=SFA.TE_teJ)
res.optimize()
# print estimates
print(res.get_beta())
print(res.get_residuals())
# print estimated parameters
print(res.get_lambda())
print(res.get_sigma2())
print(res.get_sigmau2())
print(res.get_sigmav2())
# print statistics
print(res.get_pvalue())
print(res.get_tvalue())
print(res.get_std_err())
# OR print summary
print(res.summary())
# print TE
print(res.get_technical_efficiency())
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.