pytablereader 0.31.4

Creator: codyrutscher

Last updated:

0 purchases

pytablereader 0.31.4 Image
pytablereader 0.31.4 Images
Add to Cart

Description:

pytablereader 0.31.4

pytablereader

Summary

Features


Examples

Load a CSV table
Get loaded table data as pandas.DataFrame instance
For more information


Installation

Install from PyPI
Install from PPA (for Ubuntu)


Dependencies

Optional Python packages
Optional packages (other than Python packages)


Documentation
Related Project
Sponsors



Summary
pytablereader is a Python library to load structured table data from files/strings/URL with various data format: CSV / Excel / Google-Sheets / HTML / JSON / LDJSON / LTSV / Markdown / SQLite / TSV.







Features


Extract structured tabular data from various data format:

CSV / Tab separated values (TSV) / Space separated values (SSV)
Microsoft Excel TM file
Google Sheets
HTML (table tags)
JSON
Labeled Tab-separated Values (LTSV)
Line-delimited JSON(LDJSON) / NDJSON / JSON Lines
Markdown
MediaWiki
SQLite database file





Supported data sources are:

Files on a local file system
Accessible URLs
str instances





Loaded table data can be used as:

pandas.DataFrame instance
dict instance








Examples

Load a CSV table

Sample Code:
import pytablereader as ptr
import pytablewriter as ptw


# prepare data ---
file_path = "sample_data.csv"
csv_text = "\n".join([
'"attr_a","attr_b","attr_c"',
'1,4,"a"',
'2,2.1,"bb"',
'3,120.9,"ccc"',
])

with open(file_path, "w") as f:
f.write(csv_text)

# load from a csv file ---
loader = ptr.CsvTableFileLoader(file_path)
for table_data in loader.load():
print("\n".join([
"load from file",
"==============",
"{:s}".format(ptw.dumps_tabledata(table_data)),
]))

# load from a csv text ---
loader = ptr.CsvTableTextLoader(csv_text)
for table_data in loader.load():
print("\n".join([
"load from text",
"==============",
"{:s}".format(ptw.dumps_tabledata(table_data)),
]))

Output:
load from file
==============
.. table:: sample_data

====== ====== ======
attr_a attr_b attr_c
====== ====== ======
1 4.0 a
2 2.1 bb
3 120.9 ccc
====== ====== ======

load from text
==============
.. table:: csv2

====== ====== ======
attr_a attr_b attr_c
====== ====== ======
1 4.0 a
2 2.1 bb
3 120.9 ccc
====== ====== ======




Get loaded table data as pandas.DataFrame instance

Sample Code:
import pytablereader as ptr

loader = ptr.CsvTableTextLoader(
"\n".join([
"a,b",
"1,2",
"3.3,4.4",
]))
for table_data in loader.load():
print(table_data.as_dataframe())

Output:
a b
0 1 2
1 3.3 4.4




For more information
More examples are available at
https://pytablereader.rtfd.io/en/latest/pages/examples/index.html



Installation

Install from PyPI
pip install pytablereader
Some of the formats require additional dependency packages, you can install the dependency packages as follows:


Excel

pip install pytablereader[excel]





Google Sheets

pip install pytablereader[gs]





Markdown

pip install pytablereader[md]





Mediawiki

pip install pytablereader[mediawiki]





SQLite

pip install pytablereader[sqlite]





Load from URLs

pip install pytablereader[url]





All of the extra dependencies

pip install pytablereader[all]







Install from PPA (for Ubuntu)
sudo add-apt-repository ppa:thombashi/ppa
sudo apt update
sudo apt install python3-pytablereader



Dependencies

Python 3.7+
Python package dependencies (automatically installed)


Optional Python packages


logging extras

loguru: Used for logging if the package installed





excel extras

excelrd





md extras

Markdown





mediawiki extras

pypandoc





sqlite extras

SimpleSQLite





url extras

retryrequests





pandas

required to get table data as a pandas data frame




lxml



Optional packages (other than Python packages)

libxml2 (faster HTML conversion)
pandoc (required when loading MediaWiki file)




Documentation
https://pytablereader.rtfd.io/


Related Project


pytablewriter

Tabular data loaded by pytablereader can be written another tabular data format with pytablewriter.







Sponsors



Become a sponsor

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.