pytransformers 0.1.0

Last updated:

0 purchases

pytransformers 0.1.0 Image
pytransformers 0.1.0 Images
Add to Cart

Description:

pytransformers 0.1.0

PyTransformers
PyTransformers is a powerful library for data processing and implementing Transformer-based models using Keras and TensorFlow. This library simplifies the data preprocessing steps and allows you to build and train Transformer models for various natural language processing tasks.
Installation
To install the pytransformers library, you can use pip:
pip install pytransformers
DataProcessor Class
The DataProcessor class in pytransformers is designed for data preprocessing and tokenization. It prepares the data for training and evaluation by cleaning the input and target sentences and creating TextVectorization objects for inputs and targets.
Constructor



Parameter
Description




inputs
List of input sentences.


targets
List of target sentences.


maxlen (optional)
Maximum length of input and target sentences. If not provided, it will be set to the maximum sentence length in the data.


remove_target_punc
Boolean value to indicate whether to remove punctuation from the target sentences during data processing.


remove_input_punc
Boolean value to indicate whether to remove punctuation from the input sentences during data processing.



Methods



Method
Description




get_Dataset()
Returns a preprocessed TensorFlow Dataset ready for training.


save_input_vectoriser(name)
Saves the input TextVectorization object to a pickle file with the given name.


save_target_vectoriser(name)
Saves the target TextVectorization object to a pickle file with the given name.


load_vectoriser(name)
Loads a TextVectorization object from a pickle file with the given name.



Transformer Class
The Transformer class combines the encoder and decoder layers to create the Transformer model. It takes in sequence length, vocabulary size, latent dimension, embedding dimension, and the number of heads as its parameters.
Constructor



Parameter
Description




seq_length
Maximum sequence length for inputs and targets.


vocab_size
Vocabulary size (number of unique tokens).


latent_dim
Latent dimension for the model.


embd_dim
Embedding dimension for the model.


num_heads
Number of attention heads in the model.


EncoderUnits
Number of encoder layers in the model.


DecoderUnits
Number of deocder layers in the model.



Methods



Method
Description




model()
Returns the Keras model for the Transformer.


save_transformer(name)
Saves the trained Transformer model to an h5 file with the given name.


answer()
Performs prediction for a given input sentence using the trained model.


Chat()
Allows interactive chat with the trained model for question-answer tasks.


load_transformer(name)
Loads the trained Transformer model from an h5 file with the given name.


train()
used to fine tune the Transformer model with new data and saves the updated model.



Usage
# Example usage for DataProcessor and Transformer

import pandas as pd
from pytransformer import Transformer, DataProcessor

# Example data
data = pd.DataFrame({
'text': ['this is the first example', 'and here comes the second example'],
'code': ['print("hello")', 'print("world")']
})

inputs = data['text'].tolist()
targets = data['code'].tolist()

dp = DataProcessor(inputs=inputs, targets=targets, maxlen=100, remove_input_punc=True, remove_target_punc=True)
dataset = dp.get_Dataset(batch_size=24)

seq_len = dp.maxlen
embd_dim = 512
dense_dim = 8000
vocab_size = dp.vocab_size
encoder_units = 6
decoder_units = 12
num_heads = 16

transformer = Transformer(vocab_size=vocab_size,embd_dim=embd_dim,seq_length=seq_len,latent_dim=dense_dim,num_heads=num_heads,DecoderUnits=decoder_units,EncoderUnits=encoder_units)
model = transformer.model()
model.summary()
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

model.fit(dataset, epochs=1)

# Saving the model and vocabulary
transformer.save_transformer(name='transformer_model')
dp.save_input_vectoriser('transformer_inp_vec')
dp.save_target_vectoriser('transformer_tar_vec')

# To use the trained model for prediction, you can load the model and vectorizers and call the Transformer.Chat method.

input_vocab = DataProcessor.load_vectoriser('transformer_inp_vec.pkl')
tar_vocab = DataProcessor.load_vectoriser('transformer_tar_vec.pkl')

model = keras.models.load_model('transformer_model.h5')

# Run prediction with the correct 'max_len' value
max_len = 100

Transformer.Chat(input_vectoriser=input_vocab, target_vectoriser=tar_vocab, model=model, maxlen=max_len)


# fine-tuning the Model

# Load example data
data = pd.DataFrame({
'text': ['this is the first example', 'and here comes the second example'],
'code': ['print("hello")', 'print("world")']
})

inputs = data['text'].tolist()
targets = data['code'].tolist()

# Load model and vectorizers
input_vec = DataProcessor.load_vectoriser('transformer_inp_vec.pkl')
target_vec = DataProcessor.load_vectoriser('transformer_tar_vec.pkl')
model = Transformer.load_transformer('transformer_model.h5')

# Train the model with new data
Transformer.train(model=model, input_vectoriser=input_vec, target_vectoriser=target_vec, batch_size=128, epochs=5, inputs=inputs, targets=targets, name='transformer_model')
# Train method will train the model and save it to the local directory

News:
OBert model coming soon !!
OBERT is a model that closely resembles the BERT architecture but incorporates a few modifications. It is designed to serve the purposes of classification and predicting the next token in a sequence.
Contributing
If you want to contribute to the pytransformers library, feel free to email me [email protected]

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.