tno.quantum.ml.classifiers.vc 2.0.2

Creator: bradpython12

Last updated:

0 purchases

tno.quantum.ml.classifiers.vc 2.0.2 Image
tno.quantum.ml.classifiers.vc 2.0.2 Images

Languages

Categories

Add to Cart

Description:

tno.quantum.ml.classifiers.vc 2.0.2

TNO Quantum: Variational classifier
TNO Quantum provides generic software components aimed at facilitating the development
of quantum applications.
The tno.quantum.ml.classifiers.vc package provides a VariationalClassifier class, which has been implemented
in accordance with the
scikit-learn estimator API.
This means that the classifier can be used as any other (binary and multiclass)
scikit-learn classifier and combined with transforms through
Pipelines.
In addition, the VariationalClassifier makes use of
PyTorch tensors, optimizers, and loss
functions.
Limitations in (end-)use: the content of this software package may solely be used for applications that comply with international export control laws.
Documentation
Documentation of the tno.quantum.ml.classifiers.vc package can be found here.
Install
Easily install the tno.quantum.ml.classifiers.vc package using pip:
$ python -m pip install tno.quantum.ml.classifiers.vc

If you wish to run the tests you can use:
$ python -m pip install 'tno.quantum.ml.classifiers.vc[tests]'

Example
Here's an example of how the VariationalClassifier class can be used for
classification based on the
Iris dataset:
Note that tno.quantum.ml.datasets is required for this example.
from tno.quantum.ml.classifiers.vc import VariationalClassifier
from tno.quantum.ml.datasets import get_iris_dataset

X_training, y_training, X_validation, y_validation = get_iris_dataset()
vc = VariationalClassifier()
vc = vc.fit(X_training, y_training)
predictions_validation = vc.predict(X_validation)

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.