0 purchases
tritony 0.0.17
tritony - Tiny configuration for Triton Inference Server
What is this?
If you see the official example, it is really confusing to use where to start.
Use tritony! You will get really short lines of code like example below.
import argparse
import os
from glob import glob
import numpy as np
from PIL import Image
from tritony import InferenceClient
def preprocess(img, dtype=np.float32, h=224, w=224, scaling="INCEPTION"):
sample_img = img.convert("RGB")
resized_img = sample_img.resize((w, h), Image.Resampling.BILINEAR)
resized = np.array(resized_img)
if resized.ndim == 2:
resized = resized[:, :, np.newaxis]
scaled = (resized / 127.5) - 1
ordered = np.transpose(scaled, (2, 0, 1))
return ordered.astype(dtype)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image_folder", type=str, help="Input folder.")
FLAGS = parser.parse_args()
client = InferenceClient.create_with("densenet_onnx", "0.0.0.0:8001", input_dims=3, protocol="grpc")
client.output_kwargs = {"class_count": 1}
image_data = []
for filename in glob(os.path.join(FLAGS.image_folder, "*")):
image_data.append(preprocess(Image.open(filename)))
result = client(np.asarray(image_data))
for output in result:
max_value, arg_max, class_name = output[0].decode("utf-8").split(":")
print(f"{max_value} ({arg_max}) = {class_name}")
Release Notes
24.07.11 Upgrade minimum tritonclient version to 2.34.0
23.08.30 Support optional with model input, parameters on config.pbtxt
23.06.16 Support tritonclient>=2.34.0
Loosely modified the requirements related to tritonclient
Key Features
Simple configuration. Only $host:$port and $model_name are required.
Generating asynchronous requests with asyncio.Queue
Simple Model switching
Support async tritonclient
Requirements
$ pip install tritonclient[all]
Install
$ pip install tritony
Test
With Triton
./bin/run_triton_tritony_sample.sh
pytest -s --cov-report term-missing --cov=tritony tests/
Example with image_client.py
Follow steps
in the official triton server documentation
# Download Images from https://github.com/triton-inference-server/server.git
python ./example/image_client.py --image_folder "./server/qa/images"
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.