universal-tsdb 0.1.1

Creator: bradpython12

Last updated:

0 purchases

universal-tsdb 0.1.1 Image
universal-tsdb 0.1.1 Images

Languages

Categories

Add to Cart

Description:

universaltsdb 0.1.1

universal-tsdb
A Universal Time-Series Database Python Client (InfluxDB, Warp10, ...)
Introduction
This project aims to abstract your Time-Series backend, keeping your code as agnostic as possible.
Some examples:

proof of concept
early stages of development (when you are not sure which plateform you should use)
ETL (Extract-Transform-Load), for the load step

:warning: The current code only offer INGESTING functions (writing points to a backend).
Quickstart
Installation
$ pip install universal-tsdb

>>> from universal_tsdb import Client, Ingester
>>> backend = Client('influx', 'http://localhost:8086', database='test')
>>> series = Ingester(backend)
>>> series.append(1585934895000, measurement='data', field1=42.0)
>>> series.payload()
'data field1=42.0 1585934895000000000\n'
>>> series.commit()

InfluxDB
from universal_tsdb import Client, Ingester

backend = Client('influx', 'http://localhost:8086', database='metrics',
backend_username='user', backend_password='passwd')
series = Ingester(backend)
series.append(1585934895000, measurement='mes', field1=42.0)
series.append(1585934896000, measurement='mes', tags={'tag1':'value1'}, field1=43.4, field2='value')
series.commit()

The code above will generate a data payload based on InfluxDB line protocol
and send it via a HTTP(S) request.
POST /write?db=metrics&u=user&p=passwd HTTP/1.1
Host: localhost:8086

mes field1=42.0 1585934895000000000
mes,tag1=value1 field1=43.4 field2="value" 1585934896000000000

Warp10
from universal_tsdb import Client, Ingester

backend = Client('warp10', 'http://localhost/api/v0', token='WRITING_TOKEN_ABCDEF0123456789')
series = Ingester(backend)
series.append(1585934895000, field1=42.0)
series.append(1585934896000, tags={'tag1':'value1'}, field1=43.4, field2='value')
series.commit()

The code above will generate a data payload based on Warp10 GTS format
and send it via a HTTP(S) request.
POST /api/v0/update HTTP/1.1
Host: localhost
X-Warp10-Token: WRITING_TOKEN_ABCDEF0123456789

1585934895000000// field1{} 42.0
1585934896000000// field1{tag1=value1} 42.0
1585934896000000// field2{tag1=value1} 'value'

Advanced Usage
Batch processing
When you have a large volume of data to send, you may want to split in several HTTP requests.
In 'batch'-mode, the library commit (send) the data automatically:
backend = Client('influx', 'http://localhost:8086', database='metrics')
series = Ingester(backend, batch=10)
for i in range(0..26):
series.append(field=i)
series.commit() # final commit to save the last 6 values

Commit#1 Sent 10 new series (total: 10) in 0.02 s @ 2000.0 series/s (total execution: 0.13 s)
Commit#2 Sent 10 new series (total: 20) in 0.02 s @ 2000.0 series/s (total execution: 0.15 s)
Commit#3 Sent 6 new series (total: 26) in 0.01 s @ 2000.0 series/s (total execution: 0.17 s)
REPORT: 3 commits (3 successes), 26 series, 26 values in 0.17 s @ 2000.0 values/s",

Omitting Timestamp
If you omit timestamp, the library uses the function time.time()
to generate a UTC Epoch Time. Precision is system dependent.
Measurement in Warp10
InfluxDB measurement does not exist in Warp10.
The library emulates measurement by prefixing the Warp10 classname:
backend = Client('warp10', token='WRITING_TOKEN_ABCDEF0123456789')
series = Ingester(backend)
series.append(1585934895000, measurement='mes', field1=42.0)
series.commit()

1585934896000000// mes.field1{} 42.0

Todo

API documentation
Examples
Data query/fetch functions
Refactoring of backend specific code (inherited classes?)
Time-Series Line protocol optimization
Gzip/deflate HTTP compression
Code coverage / additional tests

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.