a-pandas-ex-fastsort 0.10

Last updated:

0 purchases

a-pandas-ex-fastsort 0.10 Image
a-pandas-ex-fastsort 0.10 Images
Add to Cart

Description:

apandasexfastsort 0.10

Speedup up to 40 percent when sorting Pandas index/Series
MSVC C++ x64/x86 build tools must be installed.
This module uses https://pypi.org/project/npfastsortcpp/
There you can get all instructions
Important: Only for float/int
Tested against Windows 10 / Python 3.9.13
import pandas as pd

from a_pandas_ex_fastsort import pd_add_fastsort

pd_add_fastsort()

dafra = "https://github.com/pandas-dev/pandas/raw/main/doc/data/titanic.csv"

df5 = pd.read_csv(dafra)

# Speed gain even for small DataFrames

df = pd.concat([df5.copy() for x in range(10)], ignore_index=True)

df = df.sample(len(df))

%timeit df.d_fast_reindex() # Values must be unique

846 µs ± 37.4 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

%timeit df.sort_index()

933 µs ± 25.7 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

# The bigger, the better

df = pd.concat([df5.copy() for x in range(100)], ignore_index=True)

df = df.sample(len(df))

%timeit df.d_fast_reindex() # Values must be unique

11.1 ms ± 131 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%timeit df.sort_index()

15 ms ± 220 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

df = pd.concat([df5.copy() for x in range(100)], ignore_index=True)

df = df.sample(len(df))

%timeit df.Pclass.sort_values()

2.08 ms ± 66 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%timeit df.Pclass.s_fastsort_copy() # Be careful: original index will be dropped!

583 µs ± 5.85 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

# Be careful:

df.Pclass.s_fastsort_inplace()

# sorts only one Series in place,

# values in other columns are not being sorted!



df # starting with:

Out[19]:

PassengerId Survived Pclass ... Fare Cabin Embarked

34102 245 0 3 ... 7.2250 NaN C

28329 709 1 1 ... 151.5500 NaN S

50018 123 0 2 ... 30.0708 NaN C

51258 472 0 3 ... 8.6625 NaN S

51813 136 0 2 ... 15.0458 NaN C

... ... ... ... ... ... ...

36357 718 1 2 ... 10.5000 E101 S

78608 201 0 3 ... 9.5000 NaN S

64989 838 0 3 ... 8.0500 NaN S

20824 332 0 1 ... 28.5000 C124 S

21108 616 1 2 ... 65.0000 NaN S

[89100 rows x 12 columns]

df.Pclass.s_fastsort_inplace()



df # Result - Only Pclass has been sorted

Out[21]:

PassengerId Survived Pclass ... Fare Cabin Embarked

34102 245 0 1 ... 7.2250 NaN C

28329 709 1 1 ... 151.5500 NaN S

50018 123 0 1 ... 30.0708 NaN C

51258 472 0 1 ... 8.6625 NaN S

51813 136 0 1 ... 15.0458 NaN C

... ... ... ... ... ... ...

36357 718 1 3 ... 10.5000 E101 S

78608 201 0 3 ... 9.5000 NaN S

64989 838 0 3 ... 8.0500 NaN S

20824 332 0 3 ... 28.5000 C124 S

21108 616 1 3 ... 65.0000 NaN S

[89100 rows x 12 columns]

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.