Last updated:
0 purchases
awscdk.awsglue 1.204.0
AWS Glue Construct Library
---
AWS CDK v1 has reached End-of-Support on 2023-06-01.
This package is no longer being updated, and users should migrate to AWS CDK v2.
For more information on how to migrate, see the Migrating to AWS CDK v2 guide.
This module is part of the AWS Cloud Development Kit project.
Job
A Job encapsulates a script that connects to data sources, processes them, and then writes output to a data target.
There are 3 types of jobs supported by AWS Glue: Spark ETL, Spark Streaming, and Python Shell jobs.
The glue.JobExecutable allows you to specify the type of job, the language to use and the code assets required by the job.
glue.Code allows you to refer to the different code assets required by the job, either from an existing S3 location or from a local file path.
Spark Jobs
These jobs run in an Apache Spark environment managed by AWS Glue.
ETL Jobs
An ETL job processes data in batches using Apache Spark.
# bucket: s3.Bucket
glue.Job(self, "ScalaSparkEtlJob",
executable=glue.JobExecutable.scala_etl(
glue_version=glue.GlueVersion.V2_0,
script=glue.Code.from_bucket(bucket, "src/com/example/HelloWorld.scala"),
class_name="com.example.HelloWorld",
extra_jars=[glue.Code.from_bucket(bucket, "jars/HelloWorld.jar")]
),
description="an example Scala ETL job"
)
Streaming Jobs
A Streaming job is similar to an ETL job, except that it performs ETL on data streams. It uses the Apache Spark Structured Streaming framework. Some Spark job features are not available to streaming ETL jobs.
glue.Job(self, "PythonSparkStreamingJob",
executable=glue.JobExecutable.python_streaming(
glue_version=glue.GlueVersion.V2_0,
python_version=glue.PythonVersion.THREE,
script=glue.Code.from_asset(path.join(__dirname, "job-script/hello_world.py"))
),
description="an example Python Streaming job"
)
Python Shell Jobs
A Python shell job runs Python scripts as a shell and supports a Python version that depends on the AWS Glue version you are using.
This can be used to schedule and run tasks that don't require an Apache Spark environment.
# bucket: s3.Bucket
glue.Job(self, "PythonShellJob",
executable=glue.JobExecutable.python_shell(
glue_version=glue.GlueVersion.V1_0,
python_version=glue.PythonVersion.THREE,
script=glue.Code.from_bucket(bucket, "script.py")
),
description="an example Python Shell job"
)
See documentation for more information on adding jobs in Glue.
Connection
A Connection allows Glue jobs, crawlers and development endpoints to access certain types of data stores. For example, to create a network connection to connect to a data source within a VPC:
# security_group: ec2.SecurityGroup
# subnet: ec2.Subnet
glue.Connection(self, "MyConnection",
type=glue.ConnectionType.NETWORK,
# The security groups granting AWS Glue inbound access to the data source within the VPC
security_groups=[security_group],
# The VPC subnet which contains the data source
subnet=subnet
)
If you need to use a connection type that doesn't exist as a static member on ConnectionType, you can instantiate a ConnectionType object, e.g: new glue.ConnectionType('NEW_TYPE').
See Adding a Connection to Your Data Store and Connection Structure documentation for more information on the supported data stores and their configurations.
SecurityConfiguration
A SecurityConfiguration is a set of security properties that can be used by AWS Glue to encrypt data at rest.
glue.SecurityConfiguration(self, "MySecurityConfiguration",
security_configuration_name="name",
cloud_watch_encryption=glue.CloudWatchEncryption(
mode=glue.CloudWatchEncryptionMode.KMS
),
job_bookmarks_encryption=glue.JobBookmarksEncryption(
mode=glue.JobBookmarksEncryptionMode.CLIENT_SIDE_KMS
),
s3_encryption=glue.S3Encryption(
mode=glue.S3EncryptionMode.KMS
)
)
By default, a shared KMS key is created for use with the encryption configurations that require one. You can also supply your own key for each encryption config, for example, for CloudWatch encryption:
# key: kms.Key
glue.SecurityConfiguration(self, "MySecurityConfiguration",
security_configuration_name="name",
cloud_watch_encryption=glue.CloudWatchEncryption(
mode=glue.CloudWatchEncryptionMode.KMS,
kms_key=key
)
)
See documentation for more info for Glue encrypting data written by Crawlers, Jobs, and Development Endpoints.
Database
A Database is a logical grouping of Tables in the Glue Catalog.
glue.Database(self, "MyDatabase",
database_name="my_database"
)
Table
A Glue table describes a table of data in S3: its structure (column names and types), location of data (S3 objects with a common prefix in a S3 bucket), and format for the files (Json, Avro, Parquet, etc.):
# my_database: glue.Database
glue.Table(self, "MyTable",
database=my_database,
table_name="my_table",
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
), glue.Column(
name="col2",
type=glue.Schema.array(glue.Schema.STRING),
comment="col2 is an array of strings"
)],
data_format=glue.DataFormat.JSON
)
By default, a S3 bucket will be created to store the table's data but you can manually pass the bucket and s3Prefix:
# my_bucket: s3.Bucket
# my_database: glue.Database
glue.Table(self, "MyTable",
bucket=my_bucket,
s3_prefix="my-table/",
# ...
database=my_database,
table_name="my_table",
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)
By default, an S3 bucket will be created to store the table's data and stored in the bucket root. You can also manually pass the bucket and s3Prefix:
Partition Keys
To improve query performance, a table can specify partitionKeys on which data is stored and queried separately. For example, you might partition a table by year and month to optimize queries based on a time window:
# my_database: glue.Database
glue.Table(self, "MyTable",
database=my_database,
table_name="my_table",
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
partition_keys=[glue.Column(
name="year",
type=glue.Schema.SMALL_INT
), glue.Column(
name="month",
type=glue.Schema.SMALL_INT
)],
data_format=glue.DataFormat.JSON
)
Partition Indexes
Another way to improve query performance is to specify partition indexes. If no partition indexes are
present on the table, AWS Glue loads all partitions of the table and filters the loaded partitions using
the query expression. The query takes more time to run as the number of partitions increase. With an
index, the query will try to fetch a subset of the partitions instead of loading all partitions of the
table.
The keys of a partition index must be a subset of the partition keys of the table. You can have a
maximum of 3 partition indexes per table. To specify a partition index, you can use the partitionIndexes
property:
# my_database: glue.Database
glue.Table(self, "MyTable",
database=my_database,
table_name="my_table",
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
partition_keys=[glue.Column(
name="year",
type=glue.Schema.SMALL_INT
), glue.Column(
name="month",
type=glue.Schema.SMALL_INT
)],
partition_indexes=[glue.PartitionIndex(
index_name="my-index", # optional
key_names=["year"]
)], # supply up to 3 indexes
data_format=glue.DataFormat.JSON
)
Alternatively, you can call the addPartitionIndex() function on a table:
# my_table: glue.Table
my_table.add_partition_index(
index_name="my-index",
key_names=["year"]
)
Encryption
You can enable encryption on a Table's data:
Unencrypted - files are not encrypted. The default encryption setting.
S3Managed - Server side encryption (SSE-S3) with an Amazon S3-managed key.
# my_database: glue.Database
glue.Table(self, "MyTable",
encryption=glue.TableEncryption.S3_MANAGED,
# ...
database=my_database,
table_name="my_table",
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)
Kms - Server-side encryption (SSE-KMS) with an AWS KMS Key managed by the account owner.
# my_database: glue.Database
# KMS key is created automatically
glue.Table(self, "MyTable",
encryption=glue.TableEncryption.KMS,
# ...
database=my_database,
table_name="my_table",
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)
# with an explicit KMS key
glue.Table(self, "MyTable",
encryption=glue.TableEncryption.KMS,
encryption_key=kms.Key(self, "MyKey"),
# ...
database=my_database,
table_name="my_table",
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)
KmsManaged - Server-side encryption (SSE-KMS), like Kms, except with an AWS KMS Key managed by the AWS Key Management Service.
# my_database: glue.Database
glue.Table(self, "MyTable",
encryption=glue.TableEncryption.KMS_MANAGED,
# ...
database=my_database,
table_name="my_table",
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)
ClientSideKms - Client-side encryption (CSE-KMS) with an AWS KMS Key managed by the account owner.
# my_database: glue.Database
# KMS key is created automatically
glue.Table(self, "MyTable",
encryption=glue.TableEncryption.CLIENT_SIDE_KMS,
# ...
database=my_database,
table_name="my_table",
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)
# with an explicit KMS key
glue.Table(self, "MyTable",
encryption=glue.TableEncryption.CLIENT_SIDE_KMS,
encryption_key=kms.Key(self, "MyKey"),
# ...
database=my_database,
table_name="my_table",
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)
Note: you cannot provide a Bucket when creating the Table if you wish to use server-side encryption (KMS, KMS_MANAGED or S3_MANAGED).
Types
A table's schema is a collection of columns, each of which have a name and a type. Types are recursive structures, consisting of primitive and complex types:
# my_database: glue.Database
glue.Table(self, "MyTable",
columns=[glue.Column(
name="primitive_column",
type=glue.Schema.STRING
), glue.Column(
name="array_column",
type=glue.Schema.array(glue.Schema.INTEGER),
comment="array<integer>"
), glue.Column(
name="map_column",
type=glue.Schema.map(glue.Schema.STRING, glue.Schema.TIMESTAMP),
comment="map<string,string>"
), glue.Column(
name="struct_column",
type=glue.Schema.struct([
name="nested_column",
type=glue.Schema.DATE,
comment="nested comment"
]),
comment="struct<nested_column:date COMMENT 'nested comment'>"
)],
# ...
database=my_database,
table_name="my_table",
data_format=glue.DataFormat.JSON
)
Primitives
Numeric
Name
Type
Comments
FLOAT
Constant
A 32-bit single-precision floating point number
INTEGER
Constant
A 32-bit signed value in two's complement format, with a minimum value of -2^31 and a maximum value of 2^31-1
DOUBLE
Constant
A 64-bit double-precision floating point number
BIG_INT
Constant
A 64-bit signed INTEGER in two’s complement format, with a minimum value of -2^63 and a maximum value of 2^63 -1
SMALL_INT
Constant
A 16-bit signed INTEGER in two’s complement format, with a minimum value of -2^15 and a maximum value of 2^15-1
TINY_INT
Constant
A 8-bit signed INTEGER in two’s complement format, with a minimum value of -2^7 and a maximum value of 2^7-1
Date and time
Name
Type
Comments
DATE
Constant
A date in UNIX format, such as YYYY-MM-DD.
TIMESTAMP
Constant
Date and time instant in the UNiX format, such as yyyy-mm-dd hh:mm:ss[.f...]. For example, TIMESTAMP '2008-09-15 03:04:05.324'. This format uses the session time zone.
String
Name
Type
Comments
STRING
Constant
A string literal enclosed in single or double quotes
decimal(precision: number, scale?: number)
Function
precision is the total number of digits. scale (optional) is the number of digits in fractional part with a default of 0. For example, use these type definitions: decimal(11,5), decimal(15)
char(length: number)
Function
Fixed length character data, with a specified length between 1 and 255, such as char(10)
varchar(length: number)
Function
Variable length character data, with a specified length between 1 and 65535, such as varchar(10)
Miscellaneous
Name
Type
Comments
BOOLEAN
Constant
Values are true and false
BINARY
Constant
Value is in binary
Complex
Name
Type
Comments
array(itemType: Type)
Function
An array of some other type
map(keyType: Type, valueType: Type)
Function
A map of some primitive key type to any value type
struct(collumns: Column[])
Function
Nested structure containing individually named and typed collumns
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.