aws-cdk.aws-glue-alpha 2.159.0a0

Last updated:

0 purchases

aws-cdk.aws-glue-alpha 2.159.0a0 Image
aws-cdk.aws-glue-alpha 2.159.0a0 Images
Add to Cart

Description:

awscdk.awsgluealpha 2.159.0a0

AWS Glue Construct Library
---


The APIs of higher level constructs in this module are experimental and under active development.
They are subject to non-backward compatible changes or removal in any future version. These are
not subject to the Semantic Versioning model and breaking changes will be
announced in the release notes. This means that while you may use them, you may need to update
your source code when upgrading to a newer version of this package.



This module is part of the AWS Cloud Development Kit project.
Job
A Job encapsulates a script that connects to data sources, processes them, and then writes output to a data target.
There are 3 types of jobs supported by AWS Glue: Spark ETL, Spark Streaming, and Python Shell jobs.
The glue.JobExecutable allows you to specify the type of job, the language to use and the code assets required by the job.
glue.Code allows you to refer to the different code assets required by the job, either from an existing S3 location or from a local file path.
glue.ExecutionClass allows you to specify FLEX or STANDARD. FLEX is appropriate for non-urgent jobs such as pre-production jobs, testing, and one-time data loads.
Spark Jobs
These jobs run in an Apache Spark environment managed by AWS Glue.
ETL Jobs
An ETL job processes data in batches using Apache Spark.
# bucket: s3.Bucket

glue.Job(self, "ScalaSparkEtlJob",
executable=glue.JobExecutable.scala_etl(
glue_version=glue.GlueVersion.V4_0,
script=glue.Code.from_bucket(bucket, "src/com/example/HelloWorld.scala"),
class_name="com.example.HelloWorld",
extra_jars=[glue.Code.from_bucket(bucket, "jars/HelloWorld.jar")]
),
worker_type=glue.WorkerType.G_8X,
description="an example Scala ETL job"
)

Streaming Jobs
A Streaming job is similar to an ETL job, except that it performs ETL on data streams. It uses the Apache Spark Structured Streaming framework. Some Spark job features are not available to streaming ETL jobs.
glue.Job(self, "PythonSparkStreamingJob",
executable=glue.JobExecutable.python_streaming(
glue_version=glue.GlueVersion.V4_0,
python_version=glue.PythonVersion.THREE,
script=glue.Code.from_asset(path.join(__dirname, "job-script", "hello_world.py"))
),
description="an example Python Streaming job"
)

Python Shell Jobs
A Python shell job runs Python scripts as a shell and supports a Python version that depends on the AWS Glue version you are using.
This can be used to schedule and run tasks that don't require an Apache Spark environment. Currently, three flavors are supported:

PythonVersion.TWO (2.7; EOL)
PythonVersion.THREE (3.6)
PythonVersion.THREE_NINE (3.9)

# bucket: s3.Bucket

glue.Job(self, "PythonShellJob",
executable=glue.JobExecutable.python_shell(
glue_version=glue.GlueVersion.V1_0,
python_version=glue.PythonVersion.THREE,
script=glue.Code.from_bucket(bucket, "script.py")
),
description="an example Python Shell job"
)

Ray Jobs
These jobs run in a Ray environment managed by AWS Glue.
glue.Job(self, "RayJob",
executable=glue.JobExecutable.python_ray(
glue_version=glue.GlueVersion.V4_0,
python_version=glue.PythonVersion.THREE_NINE,
runtime=glue.Runtime.RAY_TWO_FOUR,
script=glue.Code.from_asset(path.join(__dirname, "job-script", "hello_world.py"))
),
worker_type=glue.WorkerType.Z_2X,
worker_count=2,
description="an example Ray job"
)

Enable Spark UI
Enable Spark UI setting the sparkUI property.
glue.Job(self, "EnableSparkUI",
job_name="EtlJobWithSparkUIPrefix",
spark_uI=glue.SparkUIProps(
enabled=True
),
executable=glue.JobExecutable.python_etl(
glue_version=glue.GlueVersion.V3_0,
python_version=glue.PythonVersion.THREE,
script=glue.Code.from_asset(path.join(__dirname, "job-script", "hello_world.py"))
)
)

The sparkUI property also allows the specification of an s3 bucket and a bucket prefix.
See documentation for more information on adding jobs in Glue.
Connection
A Connection allows Glue jobs, crawlers and development endpoints to access certain types of data stores. For example, to create a network connection to connect to a data source within a VPC:
# security_group: ec2.SecurityGroup
# subnet: ec2.Subnet

glue.Connection(self, "MyConnection",
type=glue.ConnectionType.NETWORK,
# The security groups granting AWS Glue inbound access to the data source within the VPC
security_groups=[security_group],
# The VPC subnet which contains the data source
subnet=subnet
)

For RDS Connection by JDBC, it is recommended to manage credentials using AWS Secrets Manager. To use Secret, specify SECRET_ID in properties like the following code. Note that in this case, the subnet must have a route to the AWS Secrets Manager VPC endpoint or to the AWS Secrets Manager endpoint through a NAT gateway.
# security_group: ec2.SecurityGroup
# subnet: ec2.Subnet
# db: rds.DatabaseCluster

glue.Connection(self, "RdsConnection",
type=glue.ConnectionType.JDBC,
security_groups=[security_group],
subnet=subnet,
properties={
"JDBC_CONNECTION_URL": f"jdbc:mysql://{db.clusterEndpoint.socketAddress}/databasename",
"JDBC_ENFORCE_SSL": "false",
"SECRET_ID": db.secret.secret_name
}
)

If you need to use a connection type that doesn't exist as a static member on ConnectionType, you can instantiate a ConnectionType object, e.g: new glue.ConnectionType('NEW_TYPE').
See Adding a Connection to Your Data Store and Connection Structure documentation for more information on the supported data stores and their configurations.
SecurityConfiguration
A SecurityConfiguration is a set of security properties that can be used by AWS Glue to encrypt data at rest.
glue.SecurityConfiguration(self, "MySecurityConfiguration",
cloud_watch_encryption=glue.CloudWatchEncryption(
mode=glue.CloudWatchEncryptionMode.KMS
),
job_bookmarks_encryption=glue.JobBookmarksEncryption(
mode=glue.JobBookmarksEncryptionMode.CLIENT_SIDE_KMS
),
s3_encryption=glue.S3Encryption(
mode=glue.S3EncryptionMode.KMS
)
)

By default, a shared KMS key is created for use with the encryption configurations that require one. You can also supply your own key for each encryption config, for example, for CloudWatch encryption:
# key: kms.Key

glue.SecurityConfiguration(self, "MySecurityConfiguration",
cloud_watch_encryption=glue.CloudWatchEncryption(
mode=glue.CloudWatchEncryptionMode.KMS,
kms_key=key
)
)

See documentation for more info for Glue encrypting data written by Crawlers, Jobs, and Development Endpoints.
Database
A Database is a logical grouping of Tables in the Glue Catalog.
glue.Database(self, "MyDatabase",
database_name="my_database",
description="my_database_description"
)

Table
A Glue table describes a table of data in S3: its structure (column names and types), location of data (S3 objects with a common prefix in a S3 bucket), and format for the files (Json, Avro, Parquet, etc.):
# my_database: glue.Database

glue.S3Table(self, "MyTable",
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
), glue.Column(
name="col2",
type=glue.Schema.array(glue.Schema.STRING),
comment="col2 is an array of strings"
)],
data_format=glue.DataFormat.JSON
)

By default, a S3 bucket will be created to store the table's data but you can manually pass the bucket and s3Prefix:
# my_bucket: s3.Bucket
# my_database: glue.Database

glue.S3Table(self, "MyTable",
bucket=my_bucket,
s3_prefix="my-table/",
# ...
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)

Glue tables can be configured to contain user-defined properties, to describe the physical storage of table data, through the storageParameters property:
# my_database: glue.Database

glue.S3Table(self, "MyTable",
storage_parameters=[
glue.StorageParameter.skip_header_line_count(1),
glue.StorageParameter.compression_type(glue.CompressionType.GZIP),
glue.StorageParameter.custom("separatorChar", ",")
],
# ...
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)

Glue tables can also be configured to contain user-defined table properties through the parameters property:
# my_database: glue.Database

glue.S3Table(self, "MyTable",
parameters={
"key1": "val1",
"key2": "val2"
},
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)

Partition Keys
To improve query performance, a table can specify partitionKeys on which data is stored and queried separately. For example, you might partition a table by year and month to optimize queries based on a time window:
# my_database: glue.Database

glue.S3Table(self, "MyTable",
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
partition_keys=[glue.Column(
name="year",
type=glue.Schema.SMALL_INT
), glue.Column(
name="month",
type=glue.Schema.SMALL_INT
)],
data_format=glue.DataFormat.JSON
)

Partition Indexes
Another way to improve query performance is to specify partition indexes. If no partition indexes are
present on the table, AWS Glue loads all partitions of the table and filters the loaded partitions using
the query expression. The query takes more time to run as the number of partitions increase. With an
index, the query will try to fetch a subset of the partitions instead of loading all partitions of the
table.
The keys of a partition index must be a subset of the partition keys of the table. You can have a
maximum of 3 partition indexes per table. To specify a partition index, you can use the partitionIndexes
property:
# my_database: glue.Database

glue.S3Table(self, "MyTable",
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
partition_keys=[glue.Column(
name="year",
type=glue.Schema.SMALL_INT
), glue.Column(
name="month",
type=glue.Schema.SMALL_INT
)],
partition_indexes=[glue.PartitionIndex(
index_name="my-index", # optional
key_names=["year"]
)], # supply up to 3 indexes
data_format=glue.DataFormat.JSON
)

Alternatively, you can call the addPartitionIndex() function on a table:
# my_table: glue.Table

my_table.add_partition_index(
index_name="my-index",
key_names=["year"]
)

Partition Filtering
If you have a table with a large number of partitions that grows over time, consider using AWS Glue partition indexing and filtering.
# my_database: glue.Database

glue.S3Table(self, "MyTable",
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
partition_keys=[glue.Column(
name="year",
type=glue.Schema.SMALL_INT
), glue.Column(
name="month",
type=glue.Schema.SMALL_INT
)],
data_format=glue.DataFormat.JSON,
enable_partition_filtering=True
)

Glue Connections
Glue connections allow external data connections to third party databases and data warehouses. However, these connections can also be assigned to Glue Tables, allowing you to query external data sources using the Glue Data Catalog.
Whereas S3Table will point to (and if needed, create) a bucket to store the tables' data, ExternalTable will point to an existing table in a data source. For example, to create a table in Glue that points to a table in Redshift:
# my_connection: glue.Connection
# my_database: glue.Database

glue.ExternalTable(self, "MyTable",
connection=my_connection,
external_data_location="default_db_public_example", # A table in Redshift
# ...
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)

Encryption
You can enable encryption on a Table's data:

S3Managed - (default) Server side encryption (SSE-S3) with an Amazon S3-managed key.

# my_database: glue.Database

glue.S3Table(self, "MyTable",
encryption=glue.TableEncryption.S3_MANAGED,
# ...
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)


Kms - Server-side encryption (SSE-KMS) with an AWS KMS Key managed by the account owner.

# my_database: glue.Database

# KMS key is created automatically
glue.S3Table(self, "MyTable",
encryption=glue.TableEncryption.KMS,
# ...
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)

# with an explicit KMS key
glue.S3Table(self, "MyTable",
encryption=glue.TableEncryption.KMS,
encryption_key=kms.Key(self, "MyKey"),
# ...
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)


KmsManaged - Server-side encryption (SSE-KMS), like Kms, except with an AWS KMS Key managed by the AWS Key Management Service.

# my_database: glue.Database

glue.S3Table(self, "MyTable",
encryption=glue.TableEncryption.KMS_MANAGED,
# ...
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)


ClientSideKms - Client-side encryption (CSE-KMS) with an AWS KMS Key managed by the account owner.

# my_database: glue.Database

# KMS key is created automatically
glue.S3Table(self, "MyTable",
encryption=glue.TableEncryption.CLIENT_SIDE_KMS,
# ...
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)

# with an explicit KMS key
glue.S3Table(self, "MyTable",
encryption=glue.TableEncryption.CLIENT_SIDE_KMS,
encryption_key=kms.Key(self, "MyKey"),
# ...
database=my_database,
columns=[glue.Column(
name="col1",
type=glue.Schema.STRING
)],
data_format=glue.DataFormat.JSON
)

Note: you cannot provide a Bucket when creating the S3Table if you wish to use server-side encryption (KMS, KMS_MANAGED or S3_MANAGED).
Types
A table's schema is a collection of columns, each of which have a name and a type. Types are recursive structures, consisting of primitive and complex types:
# my_database: glue.Database

glue.S3Table(self, "MyTable",
columns=[glue.Column(
name="primitive_column",
type=glue.Schema.STRING
), glue.Column(
name="array_column",
type=glue.Schema.array(glue.Schema.INTEGER),
comment="array<integer>"
), glue.Column(
name="map_column",
type=glue.Schema.map(glue.Schema.STRING, glue.Schema.TIMESTAMP),
comment="map<string,string>"
), glue.Column(
name="struct_column",
type=glue.Schema.struct([
name="nested_column",
type=glue.Schema.DATE,
comment="nested comment"
]),
comment="struct<nested_column:date COMMENT 'nested comment'>"
)],
# ...
database=my_database,
data_format=glue.DataFormat.JSON
)

Primitives
Numeric



Name
Type
Comments




FLOAT
Constant
A 32-bit single-precision floating point number


INTEGER
Constant
A 32-bit signed value in two's complement format, with a minimum value of -2^31 and a maximum value of 2^31-1


DOUBLE
Constant
A 64-bit double-precision floating point number


BIG_INT
Constant
A 64-bit signed INTEGER in two’s complement format, with a minimum value of -2^63 and a maximum value of 2^63 -1


SMALL_INT
Constant
A 16-bit signed INTEGER in two’s complement format, with a minimum value of -2^15 and a maximum value of 2^15-1


TINY_INT
Constant
A 8-bit signed INTEGER in two’s complement format, with a minimum value of -2^7 and a maximum value of 2^7-1



Date and time



Name
Type
Comments




DATE
Constant
A date in UNIX format, such as YYYY-MM-DD.


TIMESTAMP
Constant
Date and time instant in the UNiX format, such as yyyy-mm-dd hh:mm:ss[.f...]. For example, TIMESTAMP '2008-09-15 03:04:05.324'. This format uses the session time zone.



String



Name
Type
Comments




STRING
Constant
A string literal enclosed in single or double quotes


decimal(precision: number, scale?: number)
Function
precision is the total number of digits. scale (optional) is the number of digits in fractional part with a default of 0. For example, use these type definitions: decimal(11,5), decimal(15)


char(length: number)
Function
Fixed length character data, with a specified length between 1 and 255, such as char(10)


varchar(length: number)
Function
Variable length character data, with a specified length between 1 and 65535, such as varchar(10)



Miscellaneous



Name
Type
Comments




BOOLEAN
Constant
Values are true and false


BINARY
Constant
Value is in binary



Complex



Name
Type
Comments




array(itemType: Type)
Function
An array of some other type


map(keyType: Type, valueType: Type)
Function
A map of some primitive key type to any value type


struct(collumns: Column[])
Function
Nested structure containing individually named and typed collumns



Data Quality Ruleset
A DataQualityRuleset specifies a data quality ruleset with DQDL rules applied to a specified AWS Glue table. For example, to create a data quality ruleset for a given table:
glue.DataQualityRuleset(self, "MyDataQualityRuleset",
client_token="client_token",
description="description",
ruleset_name="ruleset_name",
ruleset_dqdl="ruleset_dqdl",
tags={
"key1": "value1",
"key2": "value2"
},
target_table=glue.DataQualityTargetTable("database_name", "table_name")
)

For more information, see AWS Glue Data Quality.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.