aznt 0.0.44

Last updated:

0 purchases

aznt 0.0.44 Image
aznt 0.0.44 Images
Add to Cart

Description:

aznt 0.0.44

aznt - From A to Z Number Theory

Number Theory library for Python with prime numbers.
Important: requires Python >= 3.11.
You can pass to author's GitHub at
adrianzapala.github.io.

Install
pip install aznt

Imports
The package aznt includes three modules: azntnumbers, azntprimality and azntplots.
Examples
import aznt.azntnumbers as azn
import aznt.azntprimality as azpr
import aznt.azntplots as azpt

General info about performance
When working with numbers
with a large number of digits, calculation results slow down quickly.
This is especially true for algorithms such as factorization,
searching for dividers etc. So for many large numbers,
it can take a very long time to get results.
Usage: azntnumbers module functions
factorization(n)
Return prime factors of a number from a function argument.
Time complexity: O(n).
Examples
>>> factorization(8)
[2, 2, 2]
>>> factorization(1123243)
[11, 11, 9283]
>>> factorization(20570952)
[2, 2, 2, 3, 17, 127, 397]

dividers_naive(n)
Returns divisors of a number from a function argument. It returns
a list of these divisors.
Time complexity: O(n).
Examples
>>> dividers_naive(1123243)
[1, 11, 121, 9283, 102113, 1123243]
>>> dividers_naive(20570952)
[1, 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 127, 136, 204, 254, 381, 397, 408, 508, 762, 794, 1016, 1191, 1524, 1588, 2159, 2382, 3048, 3176, 4318, 4764, 6477, 6749, 8636, 9528, 12954, 13498, 17272, 20247, 25908, 26996, 40494, 50419, 51816, 53992, 80988, 100838, 151257, 161976, 201676, 302514, 403352, 605028, 857123, 1210056, 1714246, 2571369, 3428492, 5142738, 6856984, 10285476, 20570952]

dividers_opt(n)
This function calculates divisors in pairs, which multiplication product creates
a number from function argument. If the argument is default (pairs=False)
and also if the numbers from these pairs are different it puts these pairs on the
list and then sort list (if the numbers are equal, it's placing only one number on the list).
Alternatively, if the argument is True it join pairs of divisors (may be
equal) into tuples and then append them into a list.
This function works pretty much faster than dividers_naive() function.
Time complexity: O(sqrt(n).
Examples
dividers_opt(100)
[1, 2, 4, 5, 10, 20, 25, 50, 100]
dividers_opt(100, pairs=True)
[(1, 100), (2, 50), (4, 25), (5, 20), (10, 10)]

tau(n)
Count the number of divisors of an integer (including 1 and the number itself).
Time complexity: O(sqrt(n)).
Examples
>>> tau(6)
4
>>> tau(4356)
27
>>> tau(12499674)
16

sigma(n)
Return the sum of divisors of an integer
(including 1 and the number itself).
Time complexity: O(sqrt(n))).
Examples
>>> sigma(3)
4
>>> sigma(343532)
687120

s(n)
Return the sum of proper divisors of an integer
(excluding n itself).
Time complexity: O(sqrt(n))).
Examples
>>> s(3)
1
>>> s(4438)
3194

gcd_mod(a, b)
Return Greatest Common Divisor (GCD) of two positive integers using Euclidean algorithm
with division.
Time complexity: O(log n)).
Examples
>>> gcd_mod(36, 882)
18
>>> gcd_mod(363, 1287)
33
>>> gcd_mod(23, 3456)
1
>>> gcd_mod(484, 56)
4

gcd_subtract(a, b)
Return Greatest Common Divisor (GCD) of two positive integers using Euclidean algorithm
with subtraction.
Time complexity: O(n)).
Examples
>>> gcd_subtract(36, 882)
18
>>> gcd_subtract(363, 1287)
33
>>> gcd_subtract(23, 3456)
1
>>> gcd_subtract(484, 56)
4

lcm(a, b)
Return Lowest Common Multiple (LCM) of two positive integers.
Time complexity: O(log n)).
Examples
>>> lcm(36, 882)
1764
>>> lcm(363, 1287)
14157
>>> lcm(23, 3456)
79488
>>> lcm(484, 56)
6776

is_gcd_eq_1(n, floor, ceil)
Return a tuple. First
element of a tuple is a quantity of pairs of numbers which
are relatively prime to themselves, the second element is a density of them and
the third element is a list of nested lists of them.
All pairs are randomly generated from floor
to ceil of numbers range (n). Based on that a variety of different
outputs can be possible for the same parameters.
Time complexity: O(n log n)).
Examples
>>> is_gcd_eq_1(25, 100, 10000)
(15, 0.6, [[1470, 8779], [8447, 5117], [7852, 5597], [8111, 7225], [5375, 6721], [9191, 4239], [7101, 6361], [1099, 211], [7036, 9515], [5281, 7212], [948, 2471], [3451, 4541], [3896, 9463], [8006, 845], [4448, 4803]])
>>> is_gcd_eq_1(25, 100, 10000)
(13, 0.52, [[7271, 5402], [9505, 5791], [8608, 1811], [6017, 9782], [1784, 3439], [8135, 9444], [3979, 9078], [2849, 2677], [888, 8171], [6399, 6145], [6647, 3679], [3697, 7051], [557, 553]])

totient(n)
Return Euler's totient function (phi) which counts the positive integers up to
a given integer n that are relatively prime to n.
Time complexity: O(log n)).
Examples
>>> totient(4)
2
>>> totient(24)
8
>>> totient(424235)
253440

pnt(n)
Return the asymptotic distribution of the prime numbers among
the positive integers.
Time complexity: O(log n).
Examples
>>> pnt(1000)
144.76482730108395 // Real value: 168
>>> pnt(1000000)
72382.41365054197 // Real value: 78498

prime_probability(n)
Return probability if a random number is prime to a specific ceil given.
Time complexity: O(log n).
Examples
>>> prime_probability(100)
0.21714724095162588
>>> prime_probability(1000)
0.14476482730108395

basel_problem(max, n=2)
Return precise summation of the reciprocals of the squares of the
natural numbers, i.e. the precise sum of the infinite series.
The sum of the series is approximately
equal to 1.644934 (pi^2 / 6 for n = 2).
Time complexity: O(n).
Examples
>>> basel_problem(345567)
1.6449311730576142
>>> basel_problem(2568, n=4)
1.0823232336914694

is_mersenne(m)
Check if a number is Mersenne number, M = 2^n - 1 (prime or composite). Returns a four-element tuple. First element is boolean value - True or False.
If True, then second argument is M with exponent, third is the number in exponent (scientific) notation and the last is whole number.
Time complexity: O(log n).
Examples
>>> is_mersenne(0)
Argument: 0. Mersenne numbers starts from 1.
>>> is_mersenne(1)
(True, 'M1', '1.00e+00', 1)
>>> is_mersenne(2)
False
>>> is_mersenne(7)
(True, 'M3', '7.00e+00', 7)
>>> is_mersenne(100)
False
>>> is_mersenne(255)
(True, 'M8', '2.55e+02', 255)
>>> is_mersenne(511)
(True, 'M9', '5.11e+02', 511)
>>> is_mersenne(1023)
(True, 'M10', '1.02e+03', 1023)
>>> is_mersenne(604462909807314587353087)
(True, 'M79', '6.04e+23', 604462909807314587353087)

is_fermat(f)
Check if a number is Fermat number, F = 2^2^n - 1 (prime or composite). Returns a four-element tuple. First element is boolean value - True or False.
If True, then second argument is F with exponent, third is the number in exponent (scientific) notation and the last is whole number.
Time complexity: O(log (log n)).
Examples
>>> is_fermat(-3)
Argument: -3. Fermat numbers starts from 3.
>>> is_fermat(1)
Argument: 1. Fermat numbers starts from 3.
>>> is_fermat(3)
(True, 'F0', '3.00e+00', 3)
>>> is_fermat(5)
(True, 'F1', '5.00e+00', 5)
>>> is_fermat(7)
False
>>> is_fermat(17)
(True, 'F2', '1.70e+01', 17)
>>> is_fermat(257)
(True, 'F3', '2.57e+02', 257)
>>> is_fermat(65537)
(True, 'F4', '6.55e+04', 65537)
>>> is_fermat(4294967297)
(True, 'F5', '4.29e+09', 4294967297)
>>> is_fermat(18446744073709551617)
(True, 'F6', '1.84e+19', 18446744073709551617)
>>> is_fermat(340282366920938463463374607431768211457)
(True, 'F7', '3.40e+38', 340282366920938463463374607431768211457)
>>> is_fermat(115792089237316195423570985008687907853269984665640564039457584007913129639937)
(True, 'F8', '1.16e+77', 115792089237316195423570985008687907853269984665640564039457584007913129639937)
>>> is_fermat(13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097)
(True, 'F9', '1.34e+154', 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097)

is_perfect(n)
Check if a number is perfect number. If so, returns True, False otherwise.
Time complexity: O(sqrt(n).
Examples
>>> is_perfect(7)
False
>>> is_perfect(8128)
True

zeta_trivial_value(s, n=10000)
Return trivial (real) value of Riemann zeta function for given argument, where s is zeta
function argument, and n is number of terms in the series of zeta.
Time complexity: O(n).
Examples
>>> zeta_trivial_value(-49)
-1.5001733492153957e+23
>>> zeta_trivial_value(-31)
472384867.72163075
>>> zeta_trivial_value(-19)
26.45621212121214
>>> zeta_trivial_value(-15)
0.44325980392156883
>>> zeta_trivial_value(-5)
-0.003968253968253967
>>> zeta_trivial_value(-4)
0
>>> zeta_trivial_value(0)
0.5
>>> zeta_trivial_value(.1)
-0.6029256240132325
>>> zeta_trivial_value(.5)
-1.4482837427744006
>>> zeta_trivial_value(1)
inf
>>> zeta_trivial_value(5)
1.0369277551433702
>>> zeta_trivial_value(33)
1.0000000001164155
>>> zeta_trivial_value(50)
1.0000000000000009

nontrivial_zeros_dist(t)
Return average distance between zeros on a critical line in Riemann zeta function.
Time complexity: O(log n).
Examples
>>> nontrivial_zeros_dist(20)
5.426572570049043
>>> nontrivial_zeros_dist(100)
2.2705167236263177
>>> nontrivial_zeros_dist(1000)
1.2393168126993492

pstats1(data_rows=29)
Return statistics of prime numbers up to data_rows which in default is equal 29.
This value can be changed from a function argument, but it can't be greater
than that value. It can't be lower than 1 also. Rows statistics starts
from 10 up to 10^29, and they are for prime numbers in these ranges.
Time complexity: O(n).
Examples
>>> pstats1()
<Returns all table>
>>> pstats1(-2)
Incorrect argument
>>> pstats1(5)
x π(x) x/π(x) logx (x/π(x) - logx) / x/π(x) [%]
1e+01 4 2.5 2.302585092994046 7.896596280238163
1e+02 25 4.0 4.605170185988092 15.129254649702295
1e+03 168 5.9523809523809526 6.907755278982137 16.050288686899894
1e+04 1229 8.136696501220504 9.210340371976184 13.195083171587305
1e+05 9592 10.42535446205171 11.512925464970229 10.431981059994436

pstats2(data_rows=29)
Return statistics of prime numbers up to data_rows which in default is equal 29.
This value can be changed from a function argument, but it can't be greater
than that value. It can't be lower than 1 also. Rows statistics starts
from 10 up to 10^29, and they are for prime numbers in these ranges.
Time complexity: O(n).
Examples
>>> pstats2()
<Returns all table>
>>> pstats2(-2)
Incorrect argument
>>> pstats2(4)
x PNT: Li(x) π(x) PNT: x/logx
1e+01 6.165599504787298 4 4.3429448190325175
1e+02 30.12614158407963 25 21.71472409516259
1e+03 177.60965799015221 168 144.76482730108395
1e+04 1246.1372158993884 1229 1085.7362047581294

pstats3(data_rows=29)
Return statistics of prime numbers up to data_rows which in default is equal 29.
This value can be changed from a function argument, but it can't be greater
than that value. It can't be lower than 1 also. Rows statistics starts
from 10 up to 10^29, and they are for prime numbers in these ranges.
Time complexity: O(n).
Examples
>>> pstats3()
<Returns all table>
>>> pstats3(-2)
Incorrect argument
>>> pstats3(3)
x π(x) PNT: Li(x) Li(x) - π(x) (Li(x) - π(x)) / π(x) [%]
1e+01 4 6.165599504787298 2.165600 54.139988
1e+02 25 30.12614158407963 5.126142 20.504566
1e+03 168 177.60965799015221 9.609658 5.720035

fib()
Return dictionary of Fibonacci numbers from 0 to n. Key is an index, and a value is a specific Fibonacci number. First must create Fibonacci class object and then call fib() method on it.
Time complexity: O(n).
Examples
>>> fob = Fibonacci(15)
>>> print(fob.fib())
{0: 0, 1: 1, 2: 1, 3: 2, 4: 3, 5: 5, 6: 8, 7: 13, 8: 21, 9: 34, 10: 55, 11: 89, 12: 144, 13: 233, 14: 377, 15: 610}

Usage: azntprimality module functions
is_prime_naive1(n)
Return if number is a prime.
Time complexity: O(n).
Examples
>>> is_prime_naive1(7)
True

is_prime_naive2(n)
Return if number is a prime. This function is faster than is_prime_naive1() function.
Time complexity: O(n).
Examples
>>> is_prime_naive2(5)
True

is_prime_sqrt(n)
Return if number is a prime. This function is faster than is_prime_naive2() function.
Time complexity: O(sqrt(n))).
Examples
>>> is_prime_sqrt(101)
True

is_prime_sqrt_odd(n)
Return if number is a prime. This function is faster than is_prime_sqrt() function.
Time complexity: O(sqrt(n))).
Examples
>>> is_prime_sqrt(23)
True

eratosthenes_sieve(n)
Return list of prime numbers from 2 up to n range.
Time complexity: O(n log n).
Examples
>>> eratosthenes_sieve(100)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

Usage: azntplots module functions
critical_strip()
Return a plot presenting critical strip and critical line of Riemann zeta.
riemann_zeta()
Return a plot presenting Riemann zeta function for critical line arguments.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Files In This Product:

Customer Reviews

There are no reviews.