binonymizer 0.1.1

Creator: bradpython12

Last updated:

0 purchases

binonymizer 0.1.1 Image
binonymizer 0.1.1 Images
Add to Cart

Description:

binonymizer 0.1.1

binonymizer
Binonymizer is a tool in Python that aims at tagging personal data1 in a parallel corpus.
For example, for a input like:
URL1 URL2 My name is Marta and my email is [email protected] Mi nombre es Marta y mi email es [email protected]

Binonymizer's output will be:
URL1 URL2 My name is <entity class="PER">Marta</entity> and my email is <entity class="EMAIL">[email protected]</entity> Mi nombre es <entity class="PER">Marta</entity> y mi email es <entity class="EMAIL">[email protected]</entity>

Detectable entity tipes
Currently, the Binonymizer is able to detect and tag the following types of entities:

PER: person names
ORG: organism and company names
EMAIL: email addresses
PHONE: phone numbers
ADDRESS: addresses
ID: personal card IDs (such as spanish DNIs)
MISC: other personal data, or when the type it's uncertain
OTHER: other

Installation & Requirements
Binonymizer works with Python 3.6, and can be installed with pip:
python3.6 -m pip install binonymizer

After installation, two binary files (binonymizer and binonymizer-lite) will be located in your python/installation/prefix/bin directory.
Language-dependant packages and models are automatically downloaded and installed on runtime, if needed.
Extra instructions for basque
In case you plan to binonymize basque data, you need to download binonymizer from github, and run the following steps:
cd binonymizer
git submodule sync
git submodule update --init --recursive --remote
cd prompsit_python_bindings
python3.6 setup.py install

Please note that you need to have access to Prompsit's private repository. Contact us if you need further details.
Usage
Binonymizer can be run with:
binonymizer [-h] --format {tmx,cols} [--tmp_dir TMP_DIR]
[-b BLOCK_SIZE] [-p PROCESSES] [-q] [--debug]
[--logfile LOGFILE] [-v]
input [output] srclang trglang

Parameters

positional arguments:

input: File to be anonymized (See format below)
output: File with anonymization annotations (default: standard output)
srclang: Source language code of the input
trglang: Target language code of the input


optional arguments:

-h, --help: show this help message and exit


Mandatory:

--format {tmx,cols}: Input file format. Values: cols, tmx ("cols" format: URL1 URL2 SOURCE_SENTENCE TARGET_SENTENCE [extra columns] tab-separated)


Optional:

--tmp_dir TMP_DIR: Temporary directory where creating the temporary files of this program (default: default system temp dir, defined by the environment variable TMPDIR in Unix)
-b BLOCK_SIZE, --block_size BLOCK_SIZE: Sentence pairs per block (default: 10000)
-p PROCESSES, --processes PROCESSES: Number of processes to use (default: all CPUs minus one)


Logging:

-q, --quiet: Silent logging mode (default: False)
--debug: Debug logging mode (default: False)
--logfile LOGFILE: Store log to a file (default: standard error output)
-v, --version: show version of this script and exit



Example
binonymizer corpus.en-es.raw corpus.en-es.anon en es --format cols --tmp_dir /tmpdir -b50000 -p31

This will read the corpus "corpus.en-es.raw", which is in a column-based format, extracting personal data and writing the tagged output in "corpus.en-es.anon". Binonymizer will run in blocks of 50000 sentences, using 31 cores, and writing temporary files in /tmpdir
Lite version
Although binonymizer makes use of parallelization by distributing workload to the available cores, some users might prefer to implement their own parallelization strategies. For that reason, a single-thread version of the script is provided: binonymizer_lite. The usage is exactly the same as for the full version, but omitting the blocksize (-b) and processes (-p) parameter.
TO DO

Fully support TMX input/output
Address recognition
GPU support
Automate Prompsit-python-bindings submodule ( git submodule update --remote , python3.6 setup.py install)

1: See EC definition of "personal information": https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Files In This Product:

Customer Reviews

There are no reviews.