Fuzzy Pandas 0.1 | GitLocker.com Product

fuzzy-pandas 0.1

Last updated:

0 purchases

fuzzy-pandas 0.1 Image
fuzzy-pandas 0.1 Images
Add to Cart

Description:

fuzzypandas 0.1

fuzzy_pandas
A razor-thin layer over csvmatch that allows you to do fuzzy mathing with pandas dataframes.
Installation
pip install fuzzy_pandas

Usage
To borrow 100% from the original repo, say you have one CSV file such as:
name,location,codename
George Smiley,London,Beggerman
Percy Alleline,London,Tinker
Roy Bland,London,Soldier
Toby Esterhase,Vienna,Poorman
Peter Guillam,Brixton,none
Bill Haydon,London,Tailor
Oliver Lacon,London,none
Jim Prideaux,Slovakia,none
Connie Sachs,Oxford,none

And another such as:
Person Name,Location
Maria Andreyevna Ostrakova,Russia
Otto Leipzig,Estonia
George SMILEY,London
Peter Guillam,Brixton
Konny Saks,Oxford
Saul Enderby,London
Sam Collins,Vietnam
Tony Esterhase,Vienna
Claus Kretzschmar,Hamburg

You can then find which names are in both files:
import pandas as pd
import fuzzy_pandas as fpd

df1 = pd.read_csv("data1.csv")
df2 = pd.read_csv("data2.csv")

matches = fpd.fuzzy_merge(df1, df2,
left_on=['name'],
right_on=['Person Name'],
ignore_case=True,
keep='match')

print(matches)




.
name
Person Name




0
George Smiley
George SMILEY


1
Peter Guillam
Peter Guillam



Options
Dumping this out of the code itself, apologies for lack of pretty formatting.

left : DataFrame
right : DataFrame

Object to merge left with


on : str or list

Column names to compare. These must be found in both DataFrames.


left_on : str or list

Column names to compare in the left DataFrame.


right_on : str or list

Column names to compare in the right DataFrame.


left_cols : list, default None

List of columns to preserve from the left DataFrame.
Defaults to left_on.


right_cols : list, default None

List of columns to preserve from the right DataFrame.
Defaults to right_on.


method : str or list, default 'exact'

Perform a fuzzy match, and an optional specified algorithm.
Multiple algorithms can be specified which will apply to each field
respectively.
Options:

exact: exact matches
levenshtein: string distance metric
jaro: string distance metric
metaphone: phoenetic matching algorithm
bilenko: prompts for matches




threshold : float or list, default 0.6

The threshold for a fuzzy match as a number between 0 and 1. Multiple numbers will be applied to each field respectively.


ignore_case : bool, default False

Ignore case (default is case-sensitive)


ignore_nonalpha : bool, default False

Ignore non-alphanumeric characters


ignore_nonlatin : bool, default False

Ignore characters from non-latin alphabets. Accented characters are compared to their unaccented equivalent


ignore_order_words : bool, default False

Ignore the order words are given in


ignore_order_letters : bool, default False

Ignore the order the letters are given in, regardless of word order


ignore_titles : bool, default False

Ignore a predefined list of name titles (such as Mr, Ms, etc)


join : { 'inner', 'left-outer', 'right-outer', 'full-outer' }


For more how-to information, check out [the examples folder](https://github.com/jsoma/fuzzy_pandas/tree/master/examples) or the [the original repo](https://github.com/maxharlow/csvmatch).

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Files In This Product: (if this is empty don't purchase this product)

Customer Reviews

There are no reviews.