pigeon_ohos

Last updated:

0 purchases

pigeon_ohos Image
pigeon_ohos Images
Add to Cart

Description:

pigeon ohos

Pigeon #
Pigeon is a code generator tool to make communication between Flutter and the
host platform type-safe, easier, and faster.
Pigeon removes the necessity to manage strings across multiple platforms and languages.
It also improves efficiency over common method channel patterns. Most importantly though,
it removes the need to write custom platform channel code, since pigeon generates it for you.
For usage examples, see the Example README.
Features #
Supported Platforms #
Currently pigeon supports generating:

Kotlin and Java code for Android
Swift and Objective-C code for iOS and macOS
C++ code for Windows

Supported Datatypes #
Pigeon uses the StandardMessageCodec so it supports
any datatype platform channels support.
Custom classes, nested datatypes, and enums are also supported.
Nullable enums in Objective-C generated code will be wrapped in a class to allow for nullability.
Synchronous and Asynchronous methods #
While all calls across platform channel APIs (such as pigeon methods) are asynchronous,
pigeon methods can be written on the native side as synchronous methods,
to make it simpler to always reply exactly once.
If asynchronous methods are needed, the @async annotation can be used. This will require
results or errors to be returned via a provided callback. Example.
Error Handling #
Kotlin, Java and Swift
All Host API exceptions are translated into Flutter PlatformException.

For synchronous methods, thrown exceptions will be caught and translated.
For asynchronous methods, there is no default exception handling; errors
should be returned via the provided callback.

To pass custom details into PlatformException for error handling,
use FlutterError in your Host API. Example.
To use FlutterError in Swift you must first extend a standard error.
Example.
Objective-C and C++
Host API errors can be sent using the provided FlutterError class (translated into PlatformException).
For synchronous methods:

Objective-C - Set the error argument to a FlutterError reference.
C++ - Return a FlutterError.

For async methods:

Return a FlutterError through the provided callback.

Task Queue #
When targeting a Flutter version that supports the
TaskQueue API
the threading model for handling HostApi methods can be selected with the
TaskQueue annotation.
Usage #

Add pigeon as a dev_dependency.
Make a ".dart" file outside of your "lib" directory for defining the
communication interface.
Run pigeon on your ".dart" file to generate the required Dart and
host-language code: flutter pub get then flutter pub run pigeon
with suitable arguments. Example.
Add the generated Dart code to ./lib for compilation.
Implement the host-language code and add it to your build (see below).
Call the generated Dart methods.

Rules for defining your communication interface #
Example

The file should contain no method or function definitions, only declarations.
Custom classes used by APIs are defined as classes with fields of the
supported datatypes (see the supported Datatypes section).
APIs should be defined as an abstract class with either @HostApi() or
@FlutterApi() as metadata. @HostApi() being for procedures that are defined
on the host platform and the @FlutterApi() for procedures that are defined in Dart.
Method declarations on the API classes should have arguments and a return
value whose types are defined in the file, are supported datatypes, or are
void.
Generics are supported, but can currently only be used with nullable types
(example: List<int?>).
Objc and Swift have special naming conventions that can be utilized with the
@ObjCSelector and @SwiftFunction respectively.

Flutter calling into iOS steps #

Add the generated Objective-C or Swift code to your Xcode project for compilation
(e.g. ios/Runner.xcworkspace or .podspec).
Implement the generated protocol for handling the calls on iOS, set it up
as the handler for the messages.

Flutter calling into Android Steps #

Add the generated Java or Kotlin code to your ./android/app/src/main/java directory
for compilation.
Implement the generated Java or Kotlin interface for handling the calls on Android, set
it up as the handler for the messages.

Flutter calling into Windows Steps #

Add the generated C++ code to your ./windows directory for compilation, and
to your windows/CMakeLists.txt file.
Implement the generated C++ abstract class for handling the calls on Windows,
set it up as the handler for the messages.

Flutter calling into macOS steps #

Add the generated Objective-C or Swift code to your Xcode project for compilation
(e.g. macos/Runner.xcworkspace or .podspec).
Implement the generated protocol for handling the calls on macOS, set it up
as the handler for the messages.

Calling into Flutter from the host platform #
Pigeon also supports calling in the opposite direction. The steps are similar
but reversed. For more information look at the annotation @FlutterApi() which
denotes APIs that live in Flutter but are invoked from the host platform.
Example.
Feedback #
File an issue in flutter/flutter with
"[pigeon]" at the start of the title.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Files In This Product:

Customer Reviews

There are no reviews.