polars-ml 0.1.4

Last updated:

0 purchases

polars-ml 0.1.4 Image
polars-ml 0.1.4 Images
Add to Cart

Description:

polarsml 0.1.4

polars-ml
Machine Learning Polars Plugin

Getting Started
Install from Pypi:
pip install polars-ml

Examples
Graph Namespace
import polars as pl
import polars_ml as plm

df = pl.DataFrame({
'src_node': ['V1', 'V2', 'V3'],
'neighbors': [['V2', 'V4'], ['V3'], ['V1']],
'weights': [[1.0, 2.0], [0.5], [3.5]]
})

embedding_df = df.with_columns(
plm.graph.node2vec(source_node=pl.col('src_node'),
neighbors=pl.col('neighbors'),
weights=pl.col('weights'),
is_directed=False,
p=1.0,
q=1.0,
max_neighbors=50,
embedding_size=64,
random_state=42,
verbose=True).alias('embedding')
).select('src_node', 'embedding')

print(embedding_df)

shape: (3, 2)
┌──────────┬───────────────────────────────────┐
│ src_node ┆ embedding │
│ --- ┆ --- │
│ str ┆ list[f32] │
╞══════════╪═══════════════════════════════════╡
│ V1 ┆ [0.521827, -0.314611, … -0.16515… │
│ V2 ┆ [0.335624, -0.041853, … 0.224424… │
│ V3 ┆ [0.274431, -0.210741, … -0.02325… │
└──────────┴───────────────────────────────────┘

Nltk Namespace
import polars as pl
import polars_ml as plm


df = pl.DataFrame({
'words': ['the', 'bull', 'is', 'running', 'away']
})

df_stemmed = df.with_columns(
plm.nltk.snowball_stem(pl.col('words'), language='english')
)

print(df_stemmed)

shape: (5, 1)
┌───────┐
│ words │
│ --- │
│ str │
╞═══════╡
│ the │
│ bull │
│ is │
│ run │
│ away │
└───────┘

Sparse Namespace
import polars as pl
import polars_ml.sparse as ps


df = pl.DataFrame({
'feature': [
[0, 1, 0, 0, 5, 0],
[2, 0, 0, 0, 3, 4],
[0, 1],
None
]
})

df_sparse = df.with_columns(
ps.from_list(pl.col('feature')).alias('sparse_feature')
)

print(df_sparse)

shape: (4, 2)
┌─────────────┬─────────────────────────┐
│ feature ┆ sparse_feature │
│ --- ┆ --- │
│ list[i64] ┆ struct[3] │
╞═════════════╪═════════════════════════╡
│ [0, 1, … 0] ┆ {6,[1, 4],[1, 5]} │
│ [2, 0, … 4] ┆ {6,[0, 4, 5],[2, 3, 4]} │
│ [0, 1] ┆ {2,[1],[1]} │
│ null ┆ {null,null,null} │
└─────────────┴─────────────────────────┘

df_sparse_norm = df_sparse.select('sparse_feature') \
.with_columns(ps.normalize(pl.col('sparse_feature'), how='vertical', p=2.0).alias('sparse_feature_norm'))
print(df_sparse_norm)

shape: (4, 2)
┌─────────────────────────┬───────────────────────────────────┐
│ sparse_feature ┆ sparse_feature_norm │
│ --- ┆ --- │
│ struct[3] ┆ struct[3] │
╞═════════════════════════╪═══════════════════════════════════╡
│ {6,[1, 4],[1, 5]} ┆ {6,[1, 4],[0.707107, 0.857493]} │
│ {6,[0, 4, 5],[2, 3, 4]} ┆ {6,[0, 4, 5],[1.0, 0.514496, 1.0… │
│ {2,[1],[1]} ┆ {2,[1],[0.707107]} │
│ {null,null,null} ┆ {null,null,null} │
└─────────────────────────┴───────────────────────────────────┘

Credits

GRAPE for fast and scalable graph processing and random-walk-based embedding. See article here and library here.
Rust Snowball Stemmer is taken from Tsoding's Seroost project (MIT). See here.
Marco Edward Gorelli - for using his polars plugin tutorial.

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.