Last updated:
0 purchases
pydantictensor 0.2.0
pydantic-tensor
Support parsing, validation, and serialization of common tensors (np.ndarray, torch.Tensor, tensorflow.Tensor, jax.Array) for Pydantic.
Installation
pip install pydantic-tensor
Usage
Validation
from typing import Annotated, Any, Literal
import numpy as np
import tensorflow as tf
import torch
from pydantic import BaseModel, Field
from pydantic_tensor import Tensor
# allow only integers greater equal than 2 and less equal than 3
DimType = Annotated[int, Field(ge=2, le=3)]
class Model(BaseModel):
# tensor type shape dtype
tensor: Tensor[torch.Tensor | np.ndarray[Any, Any], tuple[DimType, DimType], Literal["int32", "int64"]]
parsed = Model.model_validate({"tensor": np.ones((2, 2), dtype="int32")})
# access the parsed tensor via the "value" property
parsed.tensor.value
# invalid shapes
Model.model_validate({"tensor": np.ones((1, 1), dtype="int32")})
Model.model_validate({"tensor": np.ones((4, 4), dtype="int32")})
Model.model_validate({"tensor": np.ones(2, dtype="int32")})
Model.model_validate({"tensor": np.ones((2, 2, 2), dtype="int32")})
# invalid dtype
Model.model_validate({"tensor": np.ones((2, 2), dtype="float32")})
# successfully validate np.ndarray
Model.model_validate({"tensor": np.ones((2, 2), dtype="int32")})
# convert tf.Tensor to torch.Tensor
Model.model_validate({"tensor": tf.ones((2, 2), dtype=tf.int32)})
Parsing
The JSON representation of the tensor contains the:
binary data of the tensor in little-endian format encoded in Base64
shape of the tensor
datatype of the tensor
from typing import Any
import numpy as np
from pydantic import BaseModel
from pydantic_tensor import Tensor
class Model(BaseModel):
tensor: Tensor[Any, Any, Any]
parsed = Model.model_validate({"tensor": np.ones((2, 2), dtype="float32")})
# parse to JSON: {"tensor":{"shape":[2,2],"dtype":"float32","data":"AACAPwAAgD8AAIA/AACAPw=="}}
json_dump = parsed.model_dump_json()
# parse back to tensor: array([[1., 1.], [1., 1.]], dtype=float32)
Model.model_validate_json(json_dump).tensor.value
DType Collections
Types Int, UInt, Float, Complex, BFloat from pydantic_tensor.types are unions of dtypes according to their names.
For Example Int is defined as Literal["int8", "int16", "int32", "int64"].
from typing import Any
import numpy as np
from pydantic import BaseModel
from pydantic_tensor import Tensor
from pydantic_tensor.types import Int
class Model(BaseModel):
tensor: Tensor[Any, Any, Int]
for dtype in ["int8", "int16", "int32", "int64"]:
Model.model_validate({"tensor": np.ones((2, 2), dtype=dtype)}) # success
Model.model_validate({"tensor": np.ones((2, 2), dtype="float32")}) # failure
Lazy Tensors
Use JaxArray, NumpyNDArray, TensorflowTensor, TorchTensor for lazy versions of tensors types.
They only handle tensors when their equivalent libraries (jax, numpy, tensorflow, torch) are imported somewhere else in the program.
from typing import Any
import numpy as np
from pydantic import BaseModel
from pydantic_tensor import Tensor
from pydantic_tensor.backend.torch import TorchTensor
class Model(BaseModel):
tensor: Tensor[TorchTensor, Any, Any]
Model.model_validate({"tensor": np.ones((2, 2), dtype="float32")}) # failure
import torch
Model.model_validate({"tensor": np.ones((2, 2), dtype="float32")}) # success
Development
Install pre-commit hooks
pre-commit install
Lint
hatch run lint:all
Test
hatch run test:test
Check spelling
hatch run spell
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.