pynmeagps 1.0.42

Creator: bradpython12

Last updated:

0 purchases

pynmeagps 1.0.42 Image
pynmeagps 1.0.42 Images
Add to Cart

Description:

pynmeagps 1.0.42

pynmeagps
Current Status |
Installation |
Reading |
Parsing |
Generating |
Serializing |
Utilities |
Examples |
Extensibility |
Command Line Utility |
Graphical Client |
Author & License
pynmeagps is an original Python 3 parser aimed primarily at the subset of the NMEA 0183 © v4 protocol relevant to GNSS/GPS receivers.
The intention is to make it as easy as possible to read, parse and utilise NMEA GNSS/GPS messages in Python applications.
The pynmeagps homepage is located at https://github.com/semuconsulting/pynmeagps.
Companion libraries are available which handle UBX © and RTCM3 © messages:

pyubx2 (installing pyubx2 via pip also installs pynmeagps and pyrtcm)
pyrtcm


Current Status








The library implements a comprehensive set of outbound (GET) and inbound (SET/POLL) GNSS NMEA messages relating to GNSS/GPS and Maritime devices, but is readily extensible. Refer to NMEA_MSGIDS and NMEA_MSGIDS_PROP for the complete dictionary of standard and proprietary messages currently supported. While the NMEA 0183 protocol itself is proprietary, the definitions here have been collated from public domain sources.
Sphinx API Documentation in HTML format is available at https://www.semuconsulting.com/pynmeagps.
Contributions welcome - please refer to CONTRIBUTING.MD.
Bug reports and Feature requests - please use the templates provided. For general queries and advice, post a message to one of the pynmeagps Discussions channels.

Installation



pynmeagps is compatible with Python 3.8 - 3.13 and has no third-party library dependencies.
In the following, python3 & pip refer to the Python 3 executables. You may need to substitute python for python3, depending on your particular environment (on Windows it's generally python).
The recommended way to install the latest version of pynmeagps is with pip:
python3 -m pip install --upgrade pynmeagps

If required, pynmeagps can also be installed into a virtual environment, e.g.:
python3 -m pip install --user --upgrade virtualenv
python3 -m virtualenv env
source env/bin/activate (or env\Scripts\activate on Windows)
python3 -m pip install --upgrade pynmeagps
...
deactivate

For Conda users, pynmeagps is also available from conda forge:


conda install -c conda-forge pynmeagps


Reading (Streaming)
class pynmeagps.nmeareader.NMEAReader(stream, **kwargs)

You can create an NMEAReader object by calling the constructor with an active stream object.
The stream object can be any data stream which supports a read(n) -> bytes method (e.g. File or Serial, with
or without a buffer wrapper). pynmeagps implements an internal SocketStream class to allow sockets to be read in the same way as other streams (see example below).
Individual input NMEA messages can then be read using the NMEAReader.read() function, which returns both the raw data (as bytes) and the parsed data (as an NMEAMessage object, via the parse() method). The function is thread-safe in so far as the incoming data stream object is thread-safe. NMEAReader also implements an iterator.
The constructor accepts the following optional keyword arguments:

msgmode: 0 = GET (default, i.e. output from receiver), 1 = SET (i.e. input to receiver), 2 = POLL (i.e. query to receiver in anticipation of response back)
nmeaonly: True = raise error if stream contains non-NMEA data, False = ignore non-NMEA data (default)
validate: validation flags VALCKSUM (0x01) = validate checksum (default), VALMSGID (0x02) = validate msgId (i.e. raise error if unknown NMEA message is received)
quitonerror: ERR_IGNORE (0) = ignore errors, ERR_LOG (1) = log continue, ERR_RAISE (2) = (re)raise (1)

Examples:

Serial input - this example will ignore any non-NMEA data.

from serial import Serial
from pynmeagps import NMEAReader
with Serial('/dev/tty.usbmodem14101', 9600, timeout=3) as stream:
nmr = NMEAReader(stream)
raw_data, parsed_data = nmr.read()
if parsed_data is not None:
print(parsed_data)


File input (using iterator) - this example will produce a NMEAStreamError if non-NMEA data is encountered.

from pynmeagps import NMEAReader
with open('nmeadata.log', 'rb') as stream:
nmr = NMEAReader(stream, nmeaonly=True)
for raw_data, parsed_data in nmr:
print(parsed_data)


Socket input (using iterator):

import socket
from pynmeagps import NMEAReader
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as stream:
stream.connect(("localhost", 50007))
nmr = NMEAReader(stream)
for raw_data, parsed_data in nmr:
print(parsed_data)


Parsing
You can parse individual NMEA messages using the static NMEAReader.parse(message) function, which takes a string or bytes containing an NMEA message and returns an NMEAMessage object.
Note that latitude and longitude are parsed as signed decimal values for ease of use. Helper methods latlon2dms and latlon2dmm are available to convert decimal degrees to d°m′s.s″ or d°m.m′ display format.
Attributes within repeating groups are parsed with a two-digit suffix (svid_01, svid_02, etc.).
The parse() function accepts the following optional keyword arguments:

msgmode: 0 = GET (default), 1 = SET, 2 = POLL
validate: validation flags VALCKSUM (0x01) = validate checksum (default), VALMSGID (0x02) = validate msgId (i.e. raise error if unknown NMEA message is received)
quitonerror: ERR_IGNORE (0) = ignore errors, ERR_LOG (1) = log continue, ERR_RAISE (2) = (re)raise (1)

Example:
from pynmeagps import NMEAReader
msg = NMEAReader.parse('$GNGLL,5327.04319,S,00214.41396,E,223232.00,A,A*68\r\n')
print(msg)

<NMEA(GNGLL, lat=-53.45072, NS=S, lon=2.240233, EW=E, time=22:32:32, status=A, posMode=A)>

The NMEAMessage object exposes different public attributes depending on its message ID,
e.g. the RMC message has the following attributes:
from pynmeagps import latlon2dms, latlon2dmm
print(msg)
print(msg.msgID)
print(msg.lat, msg.lon)
print(msg.spd)
print(latlon2dms((msg.lat, msg.lon)))
print(latlon2dmm((msg.lat, msg.lon)))

<NMEA(GNRMC, time=22:18:38, status=A, lat=52.62063, NS=N, lon=-2.16012, EW=W, spd=37.84, cog=, date=2021-03-05, mv=, mvEW=, posMode=A)>
'RMC'
(52.62063, -2.16012)
37.84
('52°37′14.268″N', '2°9′36.432″W')
('52°37.2378′N', '2°9.6072′W')

If the NMEA sentence type is unrecognised or not yet implemented (e.g. due to definition not yet being in the public domain) and the VALMSGID validation flag is NOT set,
NMEAMessage will parse the message to a NOMINAL structure e.g.:
from pynmeagps import NMEAReader, VALCKSUM
msg = NMEAReader.parse('$GNACN,103607.00,ECN,E,A,W,A,test,C*67\r\n', validate=VALCKSUM)
print(msg)

<NMEA(GNACN, NOMINAL, field_01=103607.00, field_02=ECN, field_03=E, field_04=A, field_05=W, field_06=A, field_07=test, field_08=C)>


Generating
class pynmeagps.nmeamessage.NMEAMessage(talker: str, msgID: str, msgmode: int, **kwargs)

You can create an NMEAMessage object by calling the constructor with the following parameters:

talker (must be a valid talker from pynmeagps.NMEA_TALKERS)
message id (must be a valid id from pynmeagps.NMEA_MSGIDS or pynmeagps.NMEA_MSGIDS_PROP)
msgmode (0=GET, 1=SET, 2=POLL)
(optional) a series of keyword parameters representing the message payload

The 'msgmode' parameter signifies whether the message payload refers to a:

GET message (i.e. output from the receiver - NB these would normally be generated via the NMEAReader.read() or NMEAReader.parse() methods but can also be created manually)
SET message (i.e. command input to the receiver)
POLL message (i.e. query input to the receiver in anticipation of a response back)

The message payload can be defined via keyword arguments in one of two ways:

A single keyword parameter of payload containing the full payload as a list of string values (any other keyword parameters will be ignored).
One or more keyword parameters corresponding to individual message attributes. Any attributes not explicitly provided as keyword parameters will be set to a nominal value according to their type. For position messages, the NS or EW values will be derived from the sign of the lat or lon values and need not be provided, e.g. if lat = -32.4, NS will be "S", if lon = -1.34, EW will be "W" (any provided NS or EW values will be overridden accordingly).

e.g. Create a GLL message, passing the entire payload as a list of strings in native NMEA format:
from pynmeagps import NMEAMessage, GET
pyld=['4330.00000','N','00245.000000','W','120425.234','A','A']
msg = NMEAMessage('GN', 'GLL', GET, payload=pyld)
print(msg)

<NMEA(GNGLL, lat=43.5, NS=N, lon=-2.75, EW=W, time=12:04:25.234000, status=A, posMode=A)>

e.g. Create GLL (GET) and GNQ (POLL) message, passing individual typed values as keywords, with any omitted keywords defaulting to nominal values (in the GLL example, the 'time' parameter has been omitted and has defaulted to the current time):
from pynmeagps import NMEAMessage, GET
msg = NMEAMessage('GN', 'GLL', GET, lat=43.5, lon=-2.75, status='A', posMode='A')
print(msg)

<NMEA(GNGLL, lat=43.5, NS='N', lon=-2.75, EW='W', time='12:04:25.234745', status='A', posMode='A')>

from pynmeagps import NMEAMessage, POLL
msg = NMEAMessage('EI', 'GNQ', POLL, msgId='RMC')
print(msg)

<NMEA(EIGNQ, msgId=RMC)>

By default, NMEA position message payloads store lat/lon to 5dp of minutes (i.e. (d)ddmm.mmmmm). An optional boolean keyword argument hpnmeamode increases this to 7dp (i.e. (d)ddmm.mmmmmmm) when set to True, e.g.
from pynmeagps import NMEAMessage, GET
msgsp = NMEAMessage('GN', 'GLL', GET, lat=43.123456789, lon=-2.987654321, status='A', posMode='A', hpnmeamode=0) # standard precision
print(msgsp)
msghp = NMEAMessage('GN', 'GLL', GET, lat=-43.123456789, lon=2.987654321, status='A', posMode='A', hpnmeamode=1) # high precision
print(msghp)

NMEAMessage('GN','GLL', 0, payload=['4307.40741', 'N', '00259.25926', 'W', '095045.78', 'A', 'A'])
NMEAMessage('GN','GLL', 0, payload=['4307.4074073', 'S', '00259.2592593', 'E', '094824.88', 'A', 'A'])

NB: Once instantiated, an NMEAMessage object is immutable.

Serializing
The NMEAMessage class implements a serialize() method to convert an NMEAMessage object to a bytes array suitable for writing to an output stream.
from serial import Serial
from pynmeagps import NMEAMessage, POLL
stream = Serial('COM6', 38400, timeout=3)
msg = NMEAMessage('EI','GNQ', POLL, msgId='RMC')
print(msg.serialize())
stream.write(msg.serialize())

b'$EIGNQ,RMC*24\r\n'


Utility Methods
pynmeagps provides the following utility methods:

latlon2dms - converts decimal lat/lon to degrees, minutes, decimal seconds format e.g. "53°20′45.6″N", "2°32′46.68″W"
latlon2dmm - converts decimal lat/lon to degrees, decimal minutes format e.g. "53°20.76′N", "2°32.778′W"
llh2iso6709 - converts lat/lon and altitude (hMSL) to ISO6709 format e.g. "+27.5916+086.5640+8850CRSWGS_84/"
ecef2llh - converts ECEF (X, Y, Z) coordinates to geodetic (lat, lon, ellipsoidal height) coordinates
llh2ecef - converts geodetic (lat, lon, ellipsoidal height) coordinates to ECEF (X, Y, Z) coordinates
haversine - finds great circle distance in km between two sets of (lat, lon) coordinates
planar - finds planar distance in m between two sets of (lat, lon) coordinates
bearing - finds bearing in degrees between two sets of (lat, lon) coordinates
area - finds spherical area bounded by two sets of (lat, lon) coordinates

See Sphinx documentation for details.

Examples
The following command line examples can be found in the /examples folder:


nmeapoller.py illustrates how to read, write and display NMEA messages 'concurrently' using threads and queues. This represents a useful generic pattern for many end user applications.


nmeafile.py illustrates how to implement an NMEA datalog file reader using pynmeagps.NMEAReader iterator functionality.


nmeasocket.py illustrates how to implement a TCP Socket reader for NMEA messages using NMEAReader iterator functionality.


gpxtracker.py illustrates a simple utility to convert an NMEA datalog file to a *.gpx track file using pynmeagps.NMEAReader.


/webserver/nmeaserver.py illustrates a simple HTTP web server wrapper around pynmeagps.NMEAReader; it presents data from selected NMEA messages as a web page http://localhost:8080 or a RESTful API http://localhost:8080/gps.


utilities.py illustrates how to use various pynmeagps utility methods.



Extensibility
The NMEA protocol is principally defined in the modules nmeatypes_*.py as a series of dictionaries. Additional message types
can be readily added to the appropriate dictionary. Message payload definitions must conform to the following rules:
1. attribute names must be unique within each message class
2. avoid reserved names 'msgID', 'talker', 'payload', 'checksum'.
3. attribute types must be one of the valid types (IN, DE, CH, etc.)
4. repeating groups must be defined as a tuple ('numr', {dict}), where:
'numr' is either:
a. an integer representing a fixed number of repeats e.g. 32
b. a string representing the name of a preceding attribute containing the number of repeats e.g. 'numSv'
c. 'None' for an indeterminate repeating group. Only one such group is permitted per payload and it must be at the end.
{dict} is the nested dictionary of repeating items


Command Line Utility
A command line utility gnssstreamer is available via the pygnssutils package. This is capable of reading and parsing NMEA, UBX and RTCM3 data from a variety of input sources (e.g. serial, socket and file) and outputting to a variety of media in a variety of formats. See https://github.com/semuconsulting/pygnssutils for further details.
To install pygnssutils:
python3 -m pip install --upgrade pygnssutils

For help with the gnssstreamer utility, type:
gnssstreamer -h


Graphical Client
A python/tkinter graphical GPS client which supports NMEA, UBX and RTCM3 protocols is available at:
https://github.com/semuconsulting/PyGPSClient

Author & License Information
[email protected]

pynmeagps is maintained entirely by unpaid volunteers. It receives no funding from advertising or corporate sponsorship. If you find the utility useful, please consider sponsoring the project with the price of a coffee...

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Files In This Product:

Customer Reviews

There are no reviews.