pyplot-themes 0.2.2

Last updated:

0 purchases

pyplot-themes 0.2.2 Image
pyplot-themes 0.2.2 Images
Add to Cart

Description:

pyplotthemes 0.2.2

pyplot-themes
Themes you can see that apply to matplotlib, seaborn, and pandas plots.
This package was inspired by the ggthemes package in R,
and the code influenced from the seaborn package in python (specifically rcmod.py).
Installing
Install from PyPI
pip install pyplot-themes

Or directly from GitHub
pip install git+https://github.com/raybuhr/pyplot-themes.git

Usage
Environment
import sys
sys.version

'3.7.1 (default, Dec 14 2018, 19:28:38) \n[GCC 7.3.0]'

import matplotlib.pyplot as plt
from seaborn import palplot # only used to show off palettes

from string import ascii_uppercase
import numpy as np


def example_scatter_plot(num_cats=6):
for i in range(num_cats):
cat = ascii_uppercase[i]
x = np.random.random(100)
y = np.random.random(100) + i
plt.scatter(x, y, marker='o', label=cat)
plt.legend(loc='best')


def example_bar_plot(num_cats=6):
bar_width = 1 / num_cats + 1
for i in range(num_cats):
cat = ascii_uppercase[i]
x = np.arange(11) + 5 * i
y = np.array([0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0]) + np.random.random(1)
plt.bar(x, y, label=cat, width=bar_width)
plt.legend(loc='best')


def example_plots(num_cats=6):
example_scatter_plot(num_cats)
plt.show()
example_bar_plot(num_cats)
plt.show()

Default Maplotlib Theme
example_plots()



As you can see, the default theme has good contrast in colors, but leaves a bit to be desired in the sige of the chart (i.e. figure size aka figsize) and font.
Usage
import pyplot_themes as themes
themes.__version__

'0.2.0'

themes.theme_minimal()

This updates the global theme settings for matplotlib with a nice minimal style using colorblind safe colors.
palplot(themes.palettes.Colorblind.colors)


example_plots()



As you can see, our plots are much larger now, have accessible colors, and have some light gridlines to make identifying values a bit easier.
There are a few parameters available in all themes:

grid: toggles grid lines on/off
ticks: toggles tick marks on/off
figsize: sets the default size of plots (you can still change each plot in an ad hoc manner if needed)
fontsize: sets the default font size to be used

Some themes will allow you to pass in whatever colors you want, others you have to pick a color scheme from available options, some only let you reverse the order of the default color palette, and some don't let you mess with the colors at all. Experiment and find out what you like.
themes.theme_minimal(grid=False, ticks=False, fontsize=18)
example_scatter_plot()
plt.title("Look Mom, no lines!")

Text(0.5, 1.0, 'Look Mom, no lines!')


Themes
themes.theme_dark()
example_plots()



themes.theme_tableau()
example_plots()



palplot(themes.palettes.Solarized.dark)


themes.theme_solarized(scheme="dark")
example_plots()



palplot(themes.palettes.Solarized.light)


themes.theme_solarized(scheme="light")
example_plots()



palplot(themes.palettes.PaulTolColorSchemes.colors)


themes.theme_paul_tol()
example_plots(12)



themes.theme_paul_tol(reverse_colors=True, grid=False)
example_plots(num_cats=12)



palplot(themes.palettes.Few.light)
palplot(themes.palettes.Few.medium)
palplot(themes.palettes.Few.dark)




themes.theme_few(scheme="light")
example_plots()



themes.theme_few(scheme="medium", figsize=[5, 5])
example_scatter_plot()


themes.theme_few(scheme="dark")
example_bar_plot()


themes.theme_ucberkeley(figsize=[10, 5])
example_plots(num_cats=4)



themes.theme_ucberkeley(scheme="all", figsize=[12, 6])
example_plots(num_cats=16)



Themes that come with matplotlib
These next themes actually come with matplotlib and you can use them without the pyplot-themes package.
The functions here are basically thin wrappers for calling the matplotlib defined styles, but use a bigger figsize by default.
themes.theme_fivethirtyeight()
example_plots()



themes.theme_ggplot2(figsize=[10, 5])
example_plots()



bmh stands for Bayesian Methods for Hackers
themes.theme_bmh()
example_scatter_plot()


So we also have an alias for the spelled out version to make it easier to discover
themes.theme_bayesian_methods_for_hackers()
example_bar_plot()


While this package provides light and dark solarized themes, matplotlib comes with a light version as well. This one is a good choice if you want to keep more contrast in the colors of your plots.
themes.theme_solarized_light2()
example_plots()



Modifying Themes
In addition to making it easy to find and call the matplotlib themes, pyplot-themes also makes it easier to modify them slightly. For example say you want to use the ggplot2 theme, but you want to use the Paul Tol Color Schemes palette with it.
themes.theme_ggplot2(palette=themes.palettes.PaulTolColorSchemes.colors, figsize=[12, 6])
example_bar_plot(num_cats=12)


Or maybe the fivethirtyeight colors
themes.theme_ggplot2(palette=themes.palettes.FiveThirtyEight.colors)
example_bar_plot()


Resetting to back to matplotlib defaults
Of course, sometimes when you are trying out different themes, you may find you modified a setting that you didn't quite like, but aren't sure what changed. To aid in debugging, we created a function to reset the theme back to what matplotlib starts with. Of course, you may just like the matplotlib defaults and that's ok.
Note: The default settings for matplotlib can be slightly different depending on if you are using in python files (e.g. scripts) vs. in jupyter notebooks using %matplotlib inline. The reset function assumes you are using a notebook by default, but provides a parameter to toggle that off if you are not:
themes.theme_reset(notebook=False)

themes.theme_reset() # could also use the alias `themes.theme_matplotlib_default()`
example_bar_plot()


Palettes
In addition to the themes above, there are a bunch of color palettes provided. Here are a few to show off.
palplot(themes.palettes.Autumn1.colors)


palplot(themes.palettes.Autumn2.colors)


palplot(themes.palettes.Canyon.colors)


palplot(themes.palettes.Chili.colors)


palplot(themes.palettes.Tomato.colors)


palplot(themes.palettes.Few.medium)


palplot(themes.palettes.FiveThirtyEight.colors)


palplot(themes.palettes.Solarized.light)
palplot(themes.palettes.Solarized.dark)



palplot(themes.palettes.UCBerkeley.primary_colors)
palplot(themes.palettes.UCBerkeley.secondary_colors)



Sequential Palettes
palplot(themes.palettes.Sequential.blues)
palplot(themes.palettes.Sequential.cyans)
palplot(themes.palettes.Sequential.purples)




palplot(themes.palettes.Sequential.greens)
palplot(themes.palettes.Sequential.oranges)
palplot(themes.palettes.Sequential.reds)




Diverging Palettes
palplot(themes.palettes.Diverging.blueorange)
palplot(themes.palettes.Diverging.orangeblue)



palplot(themes.palettes.Diverging.bluepurple)
palplot(themes.palettes.Diverging.purpleblue)



palplot(themes.palettes.Diverging.bluered)
palplot(themes.palettes.Diverging.redblue)



palplot(themes.palettes.Diverging.greenpurple)
palplot(themes.palettes.Diverging.purplegreen)



palplot(themes.palettes.Diverging.greenred)
palplot(themes.palettes.Diverging.redgreen)



Using with Pandas
import pandas as pd

# some made up date
sales = np.random.randint(low=10, high=20, size=30) * [i**2 for i in range(1, 31)]
revenue = np.random.random(30) * sales
months = pd.date_range(start="2010-01-01", periods=30, freq="M")

df = pd.DataFrame({"sales": sales, "revenue": revenue.round(2)}, index=months)

df.head()


<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}

.dataframe thead th {
text-align: right;
}

</style>




sales
revenue




2010-01-31
12
2.76


2010-02-28
52
45.05


2010-03-31
90
11.80


2010-04-30
208
203.93


2010-05-31
475
337.08




themes.theme_minimal()
df.plot()

<matplotlib.axes._subplots.AxesSubplot at 0x7fdc5285f2b0>


themes.theme_dark(palette=themes.palettes.Autumn1.colors)
df.plot()

<matplotlib.axes._subplots.AxesSubplot at 0x7fdc5297e668>


Contributing
There are multiple ways you can help out with this project:

submit a bug report
submit a feature request
Fork this git repo, change some code, and submit a Pull Request

adding documentation or examples counts as changing code

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.