pyseqlsa 0.1.3

Last updated:

0 purchases

pyseqlsa 0.1.3 Image
pyseqlsa 0.1.3 Images
Add to Cart

Description:

pyseqlsa 0.1.3

LSA(lag sequential analysis)
滞后序列分析python版
安装
pip install pyseqlsa

或者
pip3 install pyseqlsa

快速使用
from pyseqlsa import LSA
data = [['A', 'B', 'C', 'B', 'C', 'B', 'C'],
['C', 'C', 'B', 'A', 'C', 'A', 'B', 'C', 'B', 'C']]

lsa = LSA(['A', 'B', 'C'])
lsa.fit(data)


若不想打印输出,可以设置output=False
lsa.fit(data,output=False)

单独查看Z矩阵的方法
# 属性Z即是残差显著性的矩阵,大于1.96即显著
lsa.Z

如果想转换Gseq5为sds文件,可以调用
lsa.to_sds(data, "filename.sds")

通过csv获得seqs,并进行滞后序列分析
注意此处默认csv的格式,第一列为序列的id,第二列为code,标题名可以随意,从第二行开始读取,如下所示



id
code




1
a


1
b


1
a


2
a


2
b


2
c



读取后的数据即可直接用于LSA代码如下所示
from pyseqlsa import read_seqs_from_csv
from pyseqlsa import LSA

data = read_seqs_from_csv('test.csv')
lsa = LSA(['A', 'B', 'C'])
lsa.fit(data)


通过excel获得seqs,并进行滞后序列分析
excel 请按照以下的格式设置,第一列为序列的id,第二列为code,标题名可以随意,从第二行开始读取,如下所示



id
code




1
a


1
b


1
a


2
a


2
b


2
c



读取后的数据即可直接用于LSA代码如下所示
from pyseqlsa import read_seqs_from_excel
from pyseqlsa import LSA

data = read_seqs_from_excel('test.xlsx')
lsa = LSA(['a', 'b', 'c'])
lsa.fit(data)

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.