pytorch-hrvvi-ext 1.4.14

Last updated:

0 purchases

pytorch-hrvvi-ext 1.4.14 Image
pytorch-hrvvi-ext 1.4.14 Images
Add to Cart

Description:

pytorchhrvviext 1.4.14

Overview
pytorch-hrvvi-ext is my extension to PyTorch, which contains many "out of the box" tools to facilitate my everyday study. It is very easy to use them and integrate them to your projects.
I will call it hutil below because of import hutil.
Install
pip3 install -U --no-cache-dir --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple pytorch-hrvvi-ext

Hightlights
Trainer
Trainer is written on ignite, providing the following features:

Train your network in few lines without writing loops explicitly.
Automatic gpu support like Keras
Metric for both CV and NLP (Loss, Accuracy, Top-K Accuracy, mAP, BLEU)
Checkpoints of the whole trainer by epochs or metrics
Send metric history to WeChat

Datasets
hutil contains many datasets wrapped by me providing torchvison.datasets style API. Some of them is much easier to train than VOC or COCO and more suitable for BEGINNERS in object detection. Now it contains the following datasets:

CaptchaDetectionOnline: generate captcha image and bounding boxes of chars online
SVHNDetection: SVHN dataset for object detection
CocoDetection: unreleased dataset of torchvison with hutil's transforms
VOCDetection: unreleased dataset of torchvison with hutil's transforms

Transforms
Transoforms in hutil transform inputs and targets of datasets simultaneously, which is more flexible than torchvison.transforms and makes it easier to do data augmentation for object detection with torchvision.transforms style API. The following transoforms is provided now:

Resize
CenterCrop
ToPercentCoords
Compose
InputTransform
TargetTransform

Others

train_test_split: Split a dataset to a train set and a test set with different (or same) transforms
Fullset: Transform your dataset to hutil' style dataset

Examples
CIFAR10
# Data Preparation

train_transforms = InputTransform(
Compose([
RandomCrop(32, padding=4),
RandomHorizontalFlip(),
ToTensor(),
Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)),
])
)

test_transform = InputTransform(
Compose([
ToTensor(),
Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)),
])
)

data_home = gpath("datasets/CIFAR10")
ds = CIFAR10(data_home, train=True, download=True)
ds_train, ds_val = train_test_split(
ds, test_ratio=0.04,
transform=train_transforms,
test_transform=test_transform,
)
ds_test = CIFAR10(data_home, train=False, download=True)


# Define network, loss and optimizer

net = ResNet(WideSEBasicBlock, [4,4,4], k=2)
net.apply(init_weights(nonlinearity='relu'))
criterion = nn.CrossEntropyLoss()
optimizer = SGD(net.parameters(), lr=1e-1, momentum=0.9, dampening=0, weight_decay=5e-4, nesterov=True)
lr_scheduler = MultiStepLR(optimizer, [40, 80, 110], gamma=0.2)


# Define metrics

metrics = {
'loss': Loss(),
'acc': Accuracy(),
}

# Put it together with Trainer

trainer = Trainer(net, criterion, optimizer, lr_scheduler, metrics=metrics, save_path=gpath("models"), name="CIFAR10-SE-WRN28-2")

# Show number of parameters

summary(net, (3,32,32))

# Define batch size

train_loader = DataLoader(ds_train, batch_size=32, shuffle=True, num_workers=1, pin_memory=True)
test_loader = DataLoader(ds_test, batch_size=128)
val_loader = DataLoader(ds_val, batch_size=128)

# Train and save good models by val loss (lower is better) after first 40 epochs

trainer.fit(train_loader, 100, val_loader=val_loader, save_by_metric='-val_loss', patience=40)

CaptchaDetectionOnline
letters = "0123456789abcdefghijkmnopqrstuvwxyzABDEFGHJKMNRT"
NUM_CLASSES = len(letters) + 1
WIDTH = 128
HEIGHT = 48
LOCATIONS = [
(8, 3),
(4, 2),
]
ASPECT_RATIOS = [
(1, 2, 1/2),
(1, 2, 1/2),
]
ASPECT_RATIOS = [torch.tensor(ars) for ars in ASPECT_RATIOS]
NUM_FEATURE_MAPS = len(ASPECT_RATIOS)
SCALES = compute_scales(NUM_FEATURE_MAPS, 0.2, 0.9)
DEFAULT_BOXES = [
compute_default_boxes(lx, ly, scale, ars)
for (lx, ly), scale, ars in zip(LOCATIONS, SCALES, ASPECT_RATIOS)
]


# Define captcha dataset

fonts = [
gpath("fonts/msyh.ttf"),
gpath("fonts/sfsl0800.pfb.ttf"),
gpath("fonts/SimHei.ttf"),
gpath("fonts/Times New Roman.ttf"),
]

font_sizes = (28, 32, 36, 40, 44, 48)
image = ImageCaptcha(
WIDTH, HEIGHT, fonts=fonts, font_sizes=font_sizes)

transform = Compose([
ToPercentCoords(),
ToTensor(),
SSDTransform(SCALES, DEFAULT_BOXES, NUM_CLASSES),
])

test_transform = Compose([
ToTensor(),
])

ds_train = CaptchaDetectionOnline(
image, size=50000, letters=letters, rotate=20, transform=transform)
ds_val = CaptchaDetectionOnline(
image, size=1000, letters=letters, rotate=20, transform=test_transform, online=False)


# Define network, loss and optimizer

out_channels = [
(NUM_CLASSES + 4) * len(ars)
for ars in ASPECT_RATIOS
]
net = DSOD([3, 4, 4, 4], 36, out_channels=out_channels, reduction=1)
net.apply(init_weights(nonlinearity='relu'))
criterion = SSDLoss(NUM_CLASSES)
optimizer = Adam(net.parameters(), lr=3e-4)
lr_scheduler = MultiStepLR(optimizer, [40, 70, 100], gamma=0.1)


# Define metrics for training and testing

metrics = {
'loss': TrainLoss(),
}
test_metrics = {
'mAP': MeanAveragePrecision(
SSDInference(
width=WIDTH, height=HEIGHT,
f_default_boxes=[ cuda(d) for d in DEFAULT_BOXES ],
num_classes=NUM_CLASSES,
)
)
}

# Put it together with Trainer

trainer = Trainer(net, criterion, optimizer, lr_scheduler,
metrics=metrics, evaluate_metrics=test_metrics,
save_path=gpath("models"), name="DSOD-CAPTCHA-48")

# Show numbers of parameters

summary(net, (3,HEIGHT, WIDTH))


# Define batch size

train_loader = DataLoader(
ds_train, batch_size=32, shuffle=True, num_workers=1, pin_memory=True)
val_loader = DataLoader(
ds_val, batch_size=32, collate_fn=box_collate_fn)

# Train and save by val mAP (higher is better) after first 10 epochs

trainer.fit(train_loader, 15, val_loader=val_loader, save_by_metric='val_mAP', patience=10)

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.